博碩士論文 993203069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.12.108.18
姓名 鄭凱云(Kai-yun cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光電化學產氫反應器之熱流特性分析
(Thermal-Fluid Analysis of Photoelectrochemical Hydrogen Production Reactor)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分析光電化學反應器內的熱傳與流場特性,並探討反應器設計對熱流特性與產氫效率的影響。使用ANSYS FLUENT套裝軟體作為數值分析的工具。主要研究的參數有反應器的幾何外型與熱傳機制設計、光電極材料能隙、照光密度與量子效率。模型中並考慮AM 1.5的太陽光照射進入反應器後,與玻璃、水及各壁面的輻射特性交互作用。
研究結果顯示,使用方形反應器於照光密度4000 W/m2、量子效率 30 %的條件下,若僅使用短波能量產氫,對應1.5 eV、2.0 eV、2.5 eV和3.0 eV的光電極之理論產氫量分別為251 L/m2-hr、150 L/m2-hr、73 L/m2-hr及25 L/m2-hr;若加入分光機制,有效地利用長波和短波中因量子效率無法用於產氫的能量,將之利用加熱反應器降低分解電位;在case 3的絕熱材加玻璃反應器設計將可提升產氫量至271 L/m2-hr、161 L/m2-hr、79 L/m2-hr及27 L/m2-hr。而理論產氫效率可由22 %、13 %、6.5 %及2.23 %,於case 3中可提升至24 %、14 %、7 %及2.4 %。
摘要(英) The design of a photo-electrochemical (PEC) reactor is very important; it affects the energy transportation and the hydrogen production rate. In this study, the thermal and fluid flow characteristics of a PEC reactor are investigated. Using ANSYS FLUENT as a tool, the effects of the reactor design, material properties, energy bandgap of the photo-electrode, incident solar intensity, and the quantum efficiency on the thermal-fluid characteristics and the hydrogen production efficiency of are studied and discussed.
Results show that, for a rectangular glass reactor with 4000 W/m2 incident solar intensity, 30 % quantum efficiency, only the short wavelength energy, the hydrogen production rate is 251 L/m2-hr, 150 L/m2-hr, 73 L/m2-hr and 25 L/m2-hr respectively for 1.5 eV, 2.0 eV, 2.5 eV and 3.0 eV bandgap photoanodes. On the other hand, using the long wavelength energy to heating the reactor and lowering the water dissociation energy, and with the case 3 reactor design, the hydrogen production rate can be increased to 271 L/m2-hr, 161 L/m2-hr, 79 L/m2-hr and 27 L/m2-hr, respectively. The corresponding solar-to-hydrogen efficiencies are increased from 22 %, 13 %, 6.5 %, and 2.23 % to 24 %, 14 %, 7 % and 2.4 %.
關鍵字(中) ★ 反應器設計
★ 數值模擬分析
★ 太陽能產氫
★ 光電化學反應器
關鍵字(英) ★ solar hydrogen production
★ photo-electrochemical method
★ reactor design
★ numerical simulation.
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
符號表 xv
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1光電化學產氫原理 2
1.2.2 熱力學分析 9
1.2.3 光反應器 10
1.2.4輻射特性與太陽輻射能量 11
1.3研究動機與內容 14
第二章 理論分析 15
2.1 光電化學反應器模型 15
2.2基本假設 17
2.3數學模式 17
2.3.1統御方程式 17
2.3.2 輻射傳輸方程式-離散座標法 19
2.4邊界條件 20
第三章 數值方法 23
3.1 SIMPE演算法則 23
3.2數值方法之驗證 26
3.2.1網格數獨立性測試 27
3.2.2立體角數量獨立性測試 28
第四章 結果與討論 29
4.1 光電極材料對產氫的影響 29
4.2不同反應器設計之熱傳現象 33
4.3 照光密度對產氫的影響 36
4.4 幾何外型對產氫的影響 37
第五章 結論與未來展望 40
參考文獻 84
參考文獻 [1 ] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[2 ] 莊浩宇、陳東煌,「取之不盡太陽能光電化學反應」,科學發展,437期,國科會,2009。
[3 ] T. G. Deutsch, “Photoelectrochemical production of hydrogen”, NREL, September 22, 2008.
[4 ] K. Maeda and K. Domen, “Photocatalytic water splitting: recent progress and future challenges”, The Journal of Physical Chemistry Letters, 2010.
[5 ] M. Grazel, “Photoelectrochemica cells”, Nature, Vol 414, November, 2001.
[6 ] K. T. Jeng, Y. C. Liu, Y. F. Leu, Y. Z. Zeng and J. C. Chung, “Membrane electrode assembly-based photoelectrochemical cell for hydrogen generation”, International Journal of Hydrogen Energy, Vol. 35, pp. I0890- I0897, 2010.
[7 ] J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, “Titanium dioxide for solar-hydrogen I. function properties”, International Journal of Hydrogen Energy, Vol. 32, pp. 2609-2629, 2007
[8 ] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, “Photoelectrochemica hydrogen generation from water using solar energy Materials-related aspects”, International Journal of Hydrogen Energy, pp. 991-1022, 2002.
[9 ] V. Urade, “Photoelectrochemical generation of hydrogen”, http://atom.ecn.purdue.edu/%7Evurade/PEC%20Generation%20of%20Hydrogen/Main01.htm
[10 ] J. Nie, Y. Chen, R. F. Boehm and S. Katukota, “A photoelectrochemical model of proton exchange water electrolysis for hydrogen prodrction”, Journal of Heat Transfer, Vol. 130, pp. 042409-1-6, 2011.
[11 ] L. Minggu, W. Ramli W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, Vol 35, pp. 5233-5244, 2010.
[12 ] T. Bak, J. Nowotny, M.Rekas, and C. C. Sorrell, “Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, Vol.27, pp. 19-26, 2002.
[13 ] J.G. Mavroides, D.I. Tchernev, J.A. Kafalas and D.F. Kolesar, “Photoelectrolysis of water in cell with TiO2 anodes”, Materials Reserch Bulletin, Vol. 10, pp. 1023-1030, 1975.
[14 ] O. Khaselev and J.A. Turner, “A monolithic photo-voltaic photo-electrochemical device for hydrogen production via water splitting”, Science, Vol. 280, pp. 425-427, 1988.
[15 ] S. Licht, B Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, Exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis”, The Journal of Physical Chemistry B, Vol. 104, pp. 8920-8924, 2000.
[16 ] V. K. Mahajan, S. K. Mohapatra and M. Misra, “Stability of TiO2 nanotube arrays in photoelectrochemical studies”, International Journal of Hydrogen Energy, vol. 33, pp. 5369-5374, 2008.
[17 ] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting”, International Journal of Hydrogen Energy, Vol. 26, pp. 653-659, 2001.
[18 ] S. Licht, “Efficient solar generation of hydrogen fuel – a fundamental analysis”, Electrochemistry Communications, Vol. 4, pp. 790-795, 2002.
[19 ] S. Licht, “Solar water splitting to generate hydrogen fuel – a photothermal electrochemical analysis”, International Journal of Hydrogen Energy, Vol. 30, pp. 459-470, 2002.
[20 ] C.J. Tseng, C.L. Tseng, L.W. Hong and J.C. Chen, “Heat transfer analysis of photoelectrochemical hydrogen generation reactor”, Asian Symposium on Computational Heat Transfer and Fluid Flow, 2007.
[21 ] C.J. Tseng and C.L. Tseng, “The reactor design for photo-electrochemical hydrogen production”, International Journal of Hydrogen Energy, 2011.
[22 ] C.L. Tseng, C.J. Tseng and J.C. Chen, “Thermodynamic analysis of a photoelectrochemical hydrogen production system”, International Journal of Hydrogen Energy, Vol. 35, pp. 2781-2785, 2010.
[23 ] C. Carver, Z. Ulissi, C. K. Ong, S. Dennison, G. H. Kelsall, K.Hellgardt, “Modeling and development of photoelectrochemical reactor for H2 production”, International Journal of Hydrogen Energy, pp. I-I3, 2011.
[24 ] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production”, Renewable and Sustainable Energy Reviews, Vol. 11, pp. 401-425, 2007.
[25 ] N.A. Kelly and T.L. Gibson, “Solar energy concentrating reactors for hydrogen production by photoelctrochemical water splitting”, International Journal of Hydrogen Energy, Vol.33, pp. 6420-6431, 2008.
[26 ] C.C Lo, C.W. Huang, C.H. Liao and J.C.S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, Vol. 35, pp. 1523-1529, 2010.
[27 ] 曾家麟和曾重仁,光電化學法產氫反應器之設計與熱流特性分析,國立中央大學機械工程研究所博士論文,中壢, 2011。
[28 ] M. F. Modest, Radiative heat transfer, Academic Press, New York, 2003.
[29 ] S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington, 1980.
[30 ] M.L. Williams, A.Yucel and S. Acharya, “Natural convection and radiation in a square enclosure”, Numerical Heat Trandfer Part A, Vol. 15, pp. 261-278, 1989.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2012-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明