參考文獻 |
[1] Armanini A., Michiue M.(Eds.), “Recent developments on debris flows”, Springer, 1997.
[2] Assier-Rzadkiewicz, S., Mariotti, C., and Heinrich, P., “Numerical Simulation of Submarine Landslides and their hydraulic effects”, J. waterway, port, Coastal and Ocean Engineering, Vol. 123, No. 4, pp. 149-157, 1997.
[3] Bagnold, R. A., “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.” Proc., Royal Society of London, series A, Vol. 225, pp. 49-63, 1954.
[4] Bird, R. B., Dai, G. C., and Yarusso, B. J., “The rheology and flow of viscoplastic materials”, Rev of Chemical Engrg., Vol. 1, No. 1, pp. 1-70, 1983.
[5] Borrero, J., Yeh H., Peterson, C., Chadha, R. K., Latha, G. and Katada, T., “Learning from earthquakes: The great Sumatra earthquake and Indian Ocean tsunami of December 26, 2004”, EERI Special Earthquake Report, 2005.
[6] Bost, C., Cottet, G. H., and Maitre, E., “Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid”, SIAM Journal on Numerical Analysis, Vol. 48, pp. 1313-1337, 2010.
[7] Brørs, B., “Numerical modeling of flow and scour at pipelines”, J. Hydr. Eng. Vol. 125, pp. 511–523, 1999.
[8] Chen, S. C. and Peng S. H., “Two-dimensional numerical model of two-layer shallow water equations for confluence simulation”, Advances in Water Resources, vol. 29, pp. 1608-1617, 2006.
[9] Chen, S. C. and Peng S. H., “Two-layer shallow water computation of mud flow intrusions into quiescent water”, Journal of Hydraulic Research, Vol. 45, No. 1 pp. 13-25, 2007.
[10] Dey, S., and Barbhuiya, A. K., “Turbulent flow field in a scour hold at a semicircular abutment”, Can. J. Eng., Vol. 32, pp. 213-232, 2005.
[11] Ettema, R., Kirkil, G. and Muste, M., “Similitude of large-scale turbulence in experiments on local scour at cylinders”, Journal of Hydraulic Engineering, ASCE Vol. 132, No. 1, pp. 33–40, 2006.
[12] Feng, Z. Y., “The seismic signatures of the surge wave from 2009 Xiaolin landslide-dam breach in Taiwan”, Hydrological Processes, Vol.26, pp.1342-1351, 2012.
[13] Hirt, C. W. and Nichols, B. D., “Volume of Fluid(VOF) method for the dynamics of free surface boundaries”, J. Comput. Phys., pp.201-225, 1981.
[14] Hsu, C. A., “Application of Depth-averaged Two-dimensional Numerical Models to Dam Break Flows,” Abstract of XXXI IAHR Congress, Korea, pp. 755-756, 2005.
[15] Huang, X. and Garcia, M. H., “A Herschal-Bulkley model for mud flow down a slope”, J. Fluid Mech., Vol. 374, pp. 305-333, 1998.
[16] Hungr, O. et al., “A review of the classification of landslide of the flow type”, Environmental and Engineering Geoscience, Vol. 7, No. 3, pp.221-238, 2001.
[17] Jeyapalan J. K. et al., “Investigation of Flow Failures of Tailings Dams”, Journal of Geotechnical Engineering, Vol. 109, No. 2, pp. 172-189, 1983.
[18] Julien, P. Y. and Lan, Y., “Rheology of hyperconcentrations”, J. Hydraul. Eng. ASCE, Vol. 117, pp. 346-353, 1991.
[19] Julien, Pierre Y. and Claudia A. Leon S., “Mud Floods, mudflows and debris flows classfication, rheology and structural design” Jornadas de Investigación, 2000.
[20] Julien, Pierre Y. and Paris, A., “Mean velocity of mudflows and debris flows” Journal of hydraulic engineergin, 2010.
[21] Khosronejad A. et al., “Experimental and computational investigation of local scour around bridge piers”, Advances in Water Resources, Vol. 37, pp. 73-85, 2012.
[22] Lee, S. O., Sturm, T., “Scaling issues for laboratory modeling of bridge pier scour.”, Procedding of 4th International Conference on Scour and Erosion, 5–7 Nov., pp. 111–115, Tokyo, Japan, 2008.
[23] Liu, P. L. F., Wu, T. R., Raichlen, Synolakis, C. E. and Borrero, J. C., “Runup and rundown generated by three-dimensional sliding masses” , J. Fluid Mech, pp. 107-144, 2005.
[24] Liu, K. F. and Mei, C.C., “Slow spreading of a sheet of Bingham fluid on an inclined plane” , J. Fluid Mech. Vol. 207, pp. 505-529, 1989.
[25] Liu, X. F. and García, M. H., “A three-dimensional numerical model with free water surface and mesh deformation for local sediment scour” , Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 4, pp. 203-217, 2008.
[26] Liu, X. F. and García, M. H., “Computational fluid dynamics modeling for the design of large primary settling tanks” , Journal of Hydraulic Engineering, Vol. 137, No. 3, pp. 343-355, 2011.
[27] MacArthur, R. C., and Schamber, D. R., “Numerical methods for simulating mudflows.” Proc., 3rd Int. Symp. on River Sedimentation, Univ. of Mississippi, Oxford, Miss., pp. 1615-1623, 1986.
[28] Melville, B. W., and Raudkivi, A. J., “Flow characteristics in local scour at bridge piers” , Journal of Hydraulic Research, Vol. 15, No. 4, pp. 373-380, 1977.
[29] Melville, B. W., “Local scour at bridge abutments,” J. Hydraulic Division, ASCE, Vol. 118, No. 4, pp. 615-631, 1992.
[30] Mei, C. C. and Yuhi, M., “Slow flow of a Bingham fluid in a shallow channel of finite width” , J. Fluid Mech., Vol. 431, pp. 135-159, 2001.
[31] O’Brien, J. S., and Julien, P. Y., “Physical properties and mechanics of hyperconcentrated sediment flows.” Proc. of the Specialty Conference on Delineation of Landslides, Flash Flood and Debris Flow Hazards in Utah, Utah Water Research Laboratory, pp. 260-279, 1985.
[32] O’Brien, J. S. et al., “Two dimensional water flood and mudflow simulation”, Journal of Hydraulic Engineering, Vol. 119, No.2, pp. 244-261, 1993.
[33] O’Brien, J. S. and Julien, P. Y., “On the importance of mudflow routing”, Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, Aug. 16-18, pp. 677-686, 2000.
[34] Olsen, N. R. B., and Melaaen, M. C., “Three-dimensional calculation of scour around cylinder”, J. Hydraul. Eng., Vol. 119, No. 9, pp. 1048-1054, 1993.
[35] Olsen, N. R. B., and Kjellesvig, H. M., “Three-dimensional numerical flow modeling for estimation of maximum local scour depth”, J. Hydraul. Res., Vol. 36, No. 4, pp. 579-590, 1998.
[36] Randrianarivelo, N., Pianet, G., Vincent, S., and Caltagirone, J. P., “Numerical modelling of solid particle motion using a new penalty method,”International Journal for Numerical Methods in Fluids, Vol. 47, pp. 1245-1251, 2005.
[37] Richardson, J. E. and Panchang, V.G., “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Eng., Vol. 124, No. 5, pp. 530-540, 1998.
[38] Santolo, A. S., Pellegrino, A. M., and Evangelista, A., “Experimental study on the rheological behavior of debris flow.”, Nat. Hazards Earth Syst. Sci., Vol. 10, pp. 2507-2514, 2010.
[39] Schamber, D. R., and MacArthur, R. C., ”One-dimensional model for mudflows.” Proc., ASCE specialty conference on hydr. and hydro. in the small comp. age. Vol. 2, ASCE, New York, N.Y., pp. 1334-1339, 1985.
[40] Sosio, R., Crosta, G. B., Frattini, P., “Field observations, rheological testing and numerical modeling of a debris-flow event.”, Earth Surface Process and Landforms, Vol. 32, pp. 290-306, 2007.
[41] Sumer, B. M., and Fredsøe, J., “Wave scour around a large vertical circular cylinder.” J. Waterway, Port, Coastal, Ocean Eng., Vol. 127(3), pp. 125–134, 2001.
[42] Wang, M. H., “Analysis on Storm surge induced coastal Inundation”, Proceedings of the 29th Ocean Engineering Conference, pp. 219-224, 2007.
[43] Whipple, K. X., “Open-channel flow of Bingham fluids: Applications in debris-flow research”, The Journal of Geology, Vol. 105, pp. 243-262, 1997.
[44] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects”, PhD dissertation, Cornell University, 2004.
[45] Wu, T. R. et al., ”Dynamic coupling if multi-phase fluids with a moving obstacle”, Journal of Marine Science and Technology, Vol. 19, No. 6, pp. 643-650, 2011.
[46] Zhao, M., Cheng, L. and Zang, Z., “Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents”, Coastal Engineering, Vol. 57, pp. 709–721, 2010.
[47] Zhao, Z. and Fernando, H. J. S., “Numerical simulation of scour around pipelines using an Euler-Euler coupled two phase model”, Env. Fluid Dyn., Vol. 7, No. 2, pp. 121-142, 2007.
[48] Logan, M. and Iverson M., “Video Documentation of Experiments at the USGS Debris-Flow Flume 1992–2006”, USGS, 2007.
http://pubs.usgs.gov/of/2007/1315/
[49] 財團法人中華顧問工程司,「莫拉克颱風雙園大橋災害致災原因分析研究委託服務工作─期初報告書」,交通部公路總局第三區養護工程處,2010年4月。
[50] 行政院農委會水土保持局,中華水土保持學會,「水土保持手冊」,2005年11月。
[51] 劉格非與李峰昌,“石流撞擊機制之試驗分析”, The Chinese Journal of Mechanics, Vol.13, No.1, 1997.
[52] 林銘郎,”土石流災害之地質環境探討”,土石流地質調查與防災對策研討會論文集,第6-1-6-28頁,2003。
[53] 王茂興,” 暴潮引致海岸地表淹水之模擬分析”,第29屆海洋工程研討會論文集,國立成功大學,2007年11月。
[54] 陳孟志,” 以三維賓漢流數值模式模擬海嘯沖刷坑之發展”,碩士論文,國立中央大學水文與海洋科學研究所,2011。
[55] 姚俊煌,”泥流型土石流之流變參數研究”,碩士論文,國立台灣科技大學營建工程系,2007。
[56] 趙啟宏,”土石流之數值模擬及流變參數特性之探討”,碩士論文,國立台灣大學土木工程學研究所,2004。
[57] 杜昀,”以移動球法量測土石漿體及新拌混凝土之流變性”,博士論文,國立雲林科技大學工程科技研究所博士班,2004。
[58] 王志賢,”泥沙顆粒組成對黏性土石流體流變參數影響之研究”,博士論文,國立成功大學水利及海洋工程研究所,2007。
[59] 郭啟文,”泥漿體及礫石泥漿體之流變特性”,碩士論文,國立成功大學水利及海洋工程研究所,2002。
[60] 楊承學,”水庫淤泥管路輸送主要損失研究”,碩士論文,私立中原大學土木工程學系,2003。
[61] 吳政貞,”土石流流況數值分析-以溪頭為例”,碩士論文,國立台灣大學土木工程學研究所,2003。
[62] 中央氣象局,「颱風的災害與預防」。http://www.cwb.gov.tw/V7/knowledge/encyclopedia/ty056.htm
[63] 行政院農委會水土保持局,「土石流資訊」。
http://www.swcb.gov.tw/form/index.asp?m1=11&m2=58
[64] 維基百科,「八八水災」。
http://zh.wikipedia.org/wiki/%E5%85%AB%E5%85%AB%E6%B0%B4%E7%81%BD
[65] 行政院農委會林務局。
http://www.forest.gov.tw/mp.asp?mp=1
|