博碩士論文 986206003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.227.13.119
姓名 鄭喆宇(Che-yu Cheng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 以三維數值模擬探討海嘯湧潮與結構物之交互作用
(Three-dimension numerical model for the interaction of tsunami bore and structures)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用
★ 海岸樹林及消波結構物對海嘯能量消散之模擬★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬
★ 裙礁流場之數值分析與消能特性之探討★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究
★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析★ 蘭嶼海嘯石與1867年基隆海嘯之動力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2011年3月11日之東日本海嘯事件使國人重視海嘯之威脅。該事件由海溝型地震所引發,地震矩規模為Mw = 9.0。地震引發高達10公尺之沿岸海嘯入射波。根據日本警察廳之資料顯示,受到海嘯湧潮衝擊全毀與半毀之建築物約有40萬棟。本研究希望藉由數值方法,瞭解海嘯湧潮之行為特性,以達到減災之目的。本研究採用LES-VOF三維數值模式,探討海嘯湧潮與結構物之互制行為。應用本數值模式前,本文先以Arnason(2005)所進行之長潰壩實驗進行驗證與分析。
  一般情況下,長潰壩蓄水水體以及海嘯湧潮發展與行進階段,所需消耗之網格約為總網格之75%,導致整體模擬既耗資源亦費時。本研究改以線性淺水波方程式之特徵曲線法,先推導水位與流速,並做為LES-VOF模式之入流邊界條件再進行三維模擬。由此組合得到之受力峰值與實驗峰值之誤差約為10%。為減少誤差,本研究另以二維潰壩模擬湧潮之行進,並將水位與流速之結果作為LES-VOF之入流邊界條件。以此方法所取得之受力峰值與速度峰值與實驗結果之誤差皆低於5%。由此可見後者結果較佳,因此後續研究皆以二維耦合三維方式進行多案例之模擬與分析。
  在結果分析方面,由湧潮衝擊結構物過程中之壓力場變化,發現湧潮撞擊之初,結構物之最大壓力位置位於半湧潮高度處,其後壓力值逐漸移至結構物底部,此說明衝擊初期之結構物受力以動壓為主,後期則轉為靜壓。本文並進行參數敏感分析,所探討之參數結構物之幾何條件及渠寬。模擬結果顯示,受力之變化與柱寬之變化約為等比例,而縱深對於受力之變化影響極小,此結果說明阻滯比為本案例之重要影響參數。另外為瞭解實驗縮尺與真實尺度之結果差異,本研究將實驗尺度放大100倍,以模擬真實尺度下之海嘯湧潮衝擊結構物行為。結果發現,受力主要受福祿數影響,雷諾數則是對於潮身撞擊部分具有較大之影響力。
摘要(英) On March 11, 2011, a powerful tsunami occurred off the east Japan that makes people to pay attention to the tsunami threat. The powerful tsunami generated by a trench-type earthquake with Mw= 9.0. The wave height was observed about 10 m offshore. More than 400,000 structures were destroyed reported by National Police Agency in Japan. This paper aimed to understand the characteristic of tsunami bores by means of numerical method, and hopefully, for tsunami hazard mitigation. We use 3D LES-VOF model to simulate the interaction of tsunami bore and a square cylinder. The model is validated with the experimental measurements of the long-flume dam-break done by Dr. Arnason(2005).
  Simulating the complete bore propagation before reaching the cylinder is very expensive. The process takes about 75% of the whole computational time. To reduce it, this study implement bore height and velocity obtained from solving the shallow water equation (SWE) as the inflow boundary conditions. The results are compared with the experiment data. The general error is approximated as 10 % in terms for the force acting on the cylinder.
  In order to reduce the error, we implement the solution from the 2D simulation. In this method, we simulate the same problem with the cylinder removed from the flume by solving 2D LES model. The solution is them used as the inflow boundary condition. We also compare the result with the experiment data, and the error is under 5 %. After the comparison, this 2D coupling method is then utilized for following simulations and analysis.
  From the pressure distribution on the cylinder while the bore is arriving structure, we notice that the maximum pressure occurs at the elevation of half of the bore height, and then moves to the bottom area. This indicates that when the bore is contacting the cylinder, the dominate force is the hydrodynamic dynamic pressure, and transfers the hydrostatic pressure during the bore body passing through. We also discuss the sensitivity of geometric parameters. The result shows that net force increases with the width of the cylinder. However, the effect from changing the length can be neglected. This indicates that the blockage ratio is an important parameter to the net force.
  In order to understand the difference between laboratory scale and real scale, this study scales the laboratory setting by magnifying 100 times to simulate the tsunami-structure interaction in the real scale. The result shows that the net force is dominated by Froude number. However, the high frequency disturbance is affected by Reynolds number.
關鍵字(中) ★ 紊流模式
★ 海嘯湧潮
★ 因次分析
★ 流體體積法
關鍵字(英) ★ Tsunami bore
★ Turbulence model
★ Dimensional Analysis
★ Volume of Fluid
論文目次 摘 要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 研究動機 1
1-2 研究方法及目的 2
1-3 本文架構 4
第二章 文獻回顧 8
2-1 海嘯與潰壩湧潮之文獻 8
2-2 兩相流相關理論之文獻回顧 11
第三章 研究方法 15
3-1 淺水波方程式 15
3-2 特徵曲線法 17
第四章 模式介紹 23
4-1 紊流模式(LES) 23
4-2 流體體積法(VOF 之方程式) 24
4-3 二維資料導入三維 26
第五章 模式驗證 33
5-1 實驗設置 33
5-2 模式設置 34
5-3 驗證結果 34
5-4 進階討論 35
第六章 結果與討論 103
6-1 重要影響參數 103
6-1-1 改變柱體寬度、渠寬、縱深 103
6-1-2 結果與討論 103
第七章 真實尺度海嘯模擬 134
7-1 模式設置 134
7-2 結果與討論 134
第八章 結論與建議 160
參考文獻 162
附錄A 模式理論 169
附錄B 公路橋梁設計規範與模擬結果之比較 171
附錄C 設定檔 174
附錄D 論文口試回覆說明表 184
參考文獻 [1] Arnason, H., “Interactions between an Incident Bore and a Free-Standing Coastal Structure.” PhD dissertation, University of Washington, 2005.
[2] Arnason, H., “Tsunami Bore Impingement onto a Vertical Column.”, 2009.
[3] Abul-Azm, A. G. “Diffraction through wide submerged breakwaters under oblique waves.” Oc. Engng., 21, 683-706, 1994.
[4] Benz, W., Asphaug, E., “Impact simulations with fracture. I. Methods and tests.” Icarus, 107, 98–116, 1994.
[5] Benz, W., Asphaug E., “Simulations of brittle solids using smooth particle hydrodynamics.” Comput. Phys. Commun. Vol. 87. P. 253–265, 1995.
[6] Cabot, W., Moin, P., “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow.” Flow Turb. Combust. 63, 269-291, 2000.
[7] Chuang, M. H., “Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis.” Master dissertation, National Central University, 2009.
[8] Dressler, R. F., “Hydraulic resistance effect upon the dam-break functions.” Journal of Research of the National Bureau of Standards 49(3): 217–225, 1952.
[9] Deardorff, J. W., “Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer.” Boundary-Layer Meterol. 7, 81-106, 1974.
[10] Dalrymple, R. A., Knio, O., Cox, D. T., Gesteira, M., and Zou, S., “Using a Lagrangian particle method for deck overtopping.’’ Proc.,
Waves 2001, ASCE, Reston, Va., 1082–1091. 2002.
[11] Fontaine, E., ‘‘On the use of smoothed particle hydrodynamics to model extreme waves and their interaction with structures.’’ Proc., Rogue Waves 2000, (www.ifremer.fr/metocean/conferences/wk.htm), 2000.
Fontaine, E., Landrini, M., and Tulin, M., ‘‘Breaking: Splashing and ploughing phases.’’ Int. Workshop on Waterwaves and Floating Bodies, 34–38, 2000.
[12] Ertekin, R. C. and Becker, J. M., “Nonlinear diffraction of waves by a submerged shelf in shallow water.” In: Chakrabarti, S. et al. (Eds), Offshore Mech. and Arctic Engng. 1996, vol. I Pt. B, ASME, New York, 31-39, 1996.
[13] Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y., “Hydraulic study on tsunami.” Coastal Engineering, Japan, Vol. 6, pp. 67–82, 1963.
[14] Fontaine, E., Landrini, M., and Tulin, M., ‘‘Breaking: Splashing
and ploughing phases.’’ Int. Workshop on Waterwaves and Floating
Bodies, 34–38, 2000.
[15] Fontaine, E., “On the use of smoothed particle hydrodynamics to model extreme waves and their interaction with structures.” Proc., Rogue Waves, 2000.
[16] Gingold, R. A., and Monaghan, J. J., ‘‘Smoothed particle hydrodynamics: Theory and application to nonspherical stars.’’ Mon. Not. R. Astron. Soc., 181, 375–389. 1977.
[17] Gomez-Gesteira, M., and Dalrymple, R. A., ``Using a 3D SPH Method for Wave Impact on a Tall Structure,’’ J. Waterways, Port, Coastal, Ocean Engineering, 130, 2, 63-69, 2004 .
[18] Harlow, F. H. and Welch, J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface,∥ Phys. Fluids, Vol. 8, pp. 2182-2189, 1965.
[19] Henderson, F. M., “Open Channel Flow,”Macmillan Publishing Co., New York, New York, pp522, 1966.
[20] Hirt, C. W., Nichols, B. D. and Romero, N. C., “SOLA-a numerical solution algorithm for transient fluid flows,” Los Alamos Scientific Laboratory, LA-582, pp. 1-50, 1975.
[21] Hirt, C. W. and Nichols, B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comp. Phys., 39, 201-225, 1981.
[22] Hino, T., Miyata, H. and Kajitani, H., “Anumerical solution method for nonlinear shallow water.” Journ of the Society of Naval Architects of Japan, vol. 153, pp. 1-12, 1983.
[23] Heinrich, P., “Non linear water waves generated by submarine and aerial landslides.” J. Waterw. Port Coast. Ocean Eng. 118, 249–266, 1992.
[24] Huang, C.-J. and Dong, C.-M., “Wave deformation and vortex generation in water waves propagating over a submerged dike.” Coast. Engng. 37, 123-148, 1999.
[25] Kothe, D. B., Williams, M. W., Lam, K. L., Korzewa, D. R., Tubesing, P. K., & Puckett, E. G., “A second-order accurate, linearity-preserving volume tracking algorithm, for free surfaceflows on 3-D unstructured meshes.” Proc. 3rd ASME/JSME Joint Fluids Engng Conf. 18–22 July. FEDSM99-7109, 1999.
[26] Lucy, L., “A numerical approach to the testing of the fission hypothesis.” Astron. J. 82, 1013-1024, 1977
[27] Losada, I. J., Silva, R., and Losada, M. A., “3-D non-breaking regular wave interaction with submerged breakwaters.” Coast. Engng., 28, 229-248, 1996.
[28] Lin, P. and Liu, P. L.-F., “A numerical study of breaking waves in the surf zone.” J. Fluid Mech., 359, 239-264, 1998a.
[29] Lin, P., and Li, C. W., “Wave-current interaction with a vertical square cylinder.” Ocean Engineering, 30 855-876, 2003.
[30] Liu, P. L.-F., Lynett, P., Fernando, H., Jaffe, B.E., Fritz, H., Higman, B., Morton, R., Goff, J., and Synolakis, C., “Observations by the International Tsunami Survey Team in Sri Lanka.” SCIENCE 308 (5728): JUN 10, 1595-1595, 2005.
[31] Lohner, R., Yang, C., and Onate, E., “On the simulation of flows with violent free surface motion”, Comput. Methods Appl, Mech, Engrg, 195, pp. 5597-5620, 2006.
[32] Monaghan, J. J., “Simulating free surface flows with SPH,” J. Comput. Phys, Vol. 110, pp. 399–406, 1994.
[33] Monaghan, J. J., ‘‘Gravity currents and solitary waves.’’ Physica D, 98, 523–533, 1996.
[34] Mohapatra, P. K., Eswaran, V., and Bhallamudi, S. M., “Two-dimensional analysis of dam-break flow in vertical plane.” J. Hydr. Engng. ASCE, 125 (2), pp. 183–192, 1999.
[35] Monaghan, J. J., Cas, R. F., Kos, A., and Hallworth, M., ‘‘Gravity
currents descending a ramp in a stratified tank.’’ J. Fluid Mech., 379,
39–70, 1999.
[36] Monaghan, J. J., and Kos, A., ‘‘Solitary waves on a Cretan
beach.’’ J. Waterw., Port, Coastal, Ocean Eng., 125(3), 145–154, 1999
[37] Monaghan, J. J. and Kos, A., “Scott Russell’s wave generator,” Phys. Fluids, Vol. 12, No. 3, pp. 622–630, 2000.
[38] Marchandise, E., and Remacle, J. F., “A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows.” J Comput Phys, 219 (2), pp. 780–800, 2006.
[39] Nichols, B. D., Hirt, C, W., and Hotchkiss, R. S., “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries” Report LA-8355, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico, 1980.
[40] Nouri, Y., Nistor, I., Palermo, D. and Cornett, A., “Experimental investigation of the tsunami impact on free standing structures.” Coastal Engineering Journal, JSCE, 52 (1), 43–70, 2010.
[41] Nistor, I., Palermo, D., Cornett, A., and Al-Faesly, T., “Experiment and numerical modeling of tsunami loading on structures.”, 2011.
[42] Osher, S. and Sethian, J. A., “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations.” J. Comput. Phys. 79, 12-49, 1988.
[43] Ritter, A., “Die Fortpflanzung der Wasserwellen.” Zeitschrift
des Vereines Deutscher Ingenieure, Vol. 36, NO. 24, pp.947–954, 1892.
[44] Ramsden, J. D., “Tsunamis: Forces on a Vertical Wall Caused
by Long Waves, Bores, and Surges on a Dry Bed.” Ph.D. dissertation, California Institute of Technology, 1993.
[45] Rider, W. J. and Kothe, D. B., “Reconstructing Volume Tracking.” J. Comp. Phys., 141, 112-152, 1998.
[46] Rogers, B.D. and Dalrymple, R. A., “Three-Dimensional SPH-SPS Modeling of Wave Breaking.” Symposium on Ocean Wave Measurements and Analysis, ASCE, Madrid, 2005.
[47] Stoker, J. J., “The formation of breaker and bores, the theory of nonlinear wave propagation in shallow water and open channels, Communications on AppliedMathematics 1(1): 1–87.”, 1948.
[48] Stoker, J. J., “Water Waves; The Mathematical Theory with Applications.” Interscience Publishers, New York, 1957.
[49] Smagorinsky, J., “General circulation experiments with the primitive equations: I. The basic equations. Mon.” Weather Rev. 91, 99-164, 1963.
[50] Synolakis, C. E. and Kong, L., “Runup measurements of the December 2004 Indian Ocean tsunami.” Earthquake Spectra 22, S3(June), 2006.
[51] Synolakis, C. E., and Bernard, E. N. ”Tsunami science before and beyond Boxing Day 2004” doi: 10.1098/rsta.2006.1824 Phil. Trans. R. Soc. A 2006 364, 2231-2265, 2006.
[52] Ting, F. C. K. and Kim, Y.-K., “Vortex generation in water waves propagation over a submerged obstacle.” Coast. Engng. 24, 23-49, 1994.
[53] Tang, C. J. and Chang, J. H., “Flow separation during solitary wave passing over submerged obstacle.” J. Hydr. Engng. 124, 742-749, 1998.
[54] Vincent, S., Randrianarivelo, T. N., Pianet, G., and Caltagirone, J. P., “Local penalty methods for flows interacting with moving solids at high Reynolds numbers”, Computers & Fluids, 36, pp. 902–913, 2007.
[55] Whitham, G. B., “Linear and Nonlinear Waves,” a Wiley-Interscience Pub., New York, pp636, 1974.
[56] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects,” PhD dissertation, Cornell University, 2004.
[57] Walhorn, E., Kolke, A., Hubner, B., and Dinkler, D., “Coupling within a monolithic model involving free surface flows.” Comput. Struct., 83, pp. 2100–2111, 2005.
[58] Wu, T. R. and Liu, P. L. F., “Numerical study on the three-dimensional dam-break bore interacting with a square cylinder”, in Nonlinear Wave Dynamics (ed. Lynett, P.), World Scientific Publishing, 2009a.
[59] Wijatmiko, I and Murakami, K., “Study on the Interaction Between Tsunami Bore and Cylindrical Structure with Weir.” 2012.
[60] Yeh, H. H,. and Ghazali, A., “nearshore behavior of bore on a uniformly sloping beach.” Proc. 20th Conf. Coastal Engng, pp. 877-888, 1986.
[61] Yeh, H. H., & Ghazali, A., “On bore collapse.” J . Geophys. Res. 93, 6930-6936. 1988.
[62] Yeh, H. H,. Ghazali, A., and Marton I., “Experimental study of bore run up.”, J . Fluid Mech. 206, 563-578, 1989.
[63] Yang C, Lin B, Jiang C, Liu Y., “Predicting near-field dam-break flow and impact force using a 3D model.” Journal of Hydraulic Research, 48 784-792 ISBN/ISSN: 10.1080/00221686.2010.531099, 2010.
[64] Zhuang, F. and Lee, J. J., “A viscous rotational model for wave overtopping over marine structure.” Proc. 25th Int. Conf. Coastal Eng., ASCE, pp. 2178-2191., 1996.
[65] 朱佳仁, ”Engineering fluid mechanics” 台北市: 科技圖書,2005
[66] 許泰文,謝志敏,辛志勇,黃榮鑑, “應用數值模擬波浪通過系列潛堤之渦流特性”,第二十四屆全國力學會議, pp. B249-B256, 2000.
[67] 許泰文,彭逸凡,謝志敏,楊文昌,黃榮鑑, “應用數值模擬波浪通過不透水雙列潛堤之渦流特性”,第二十六屆全國力學會議論文摘要集, pp。 B054, 2002。
[68] 羅德章,陳力民,吳姿潓, “計算流力在潰壩波與結構物互制之研究”,第33屆海洋工程研討會論文集, 2011。
[69] 魏妙珊, “三維海嘯湧潮對近岸結構物之影響”,碩士論文, 2009。
[70] 日本警察廳(http://www.npa.go.jp/archive/keibi/biki/higaijokyo.pdf)
[71] http://www.youtube.com/user/AssociatedPress/videos?query=Tsunami+Slams+Northeast+Japan)
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明