博碩士論文 946404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.206.169
姓名 牟鍾香(Chung-Hsiang Mu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Shallow Geological Structure and hydromechanical behaviour of an active reverse fault at convergent plate boundary: the Chihshang Fault, eastern Taiwan)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 池上斷層地處菲律賓海板塊與歐亞大陸板塊的交界處,斷層的滑移作用造成地表每年2-3公分的錯移量,堪稱世界上位移速度最快的斷層之一。從長期地表位移測量分析顯示,池上斷層震間滑移之速度具有季節性的變化,快速的潛變活動大多發生在雨季,而乾季時,斷層活動近乎停滯,降雨與地下水的自然洩降似乎對於池上斷層的滑移速度影響甚遠。進一步而言,如此活躍的斷層滑移行為在穿越沉積層至地表的過程中,斷層帶的裂隙增減與幾何形貌的確會影響其周圍含水層的水力特性。
本研究彙整近廿年來池上斷層的大地測量以及地球物理探勘成果,尤其著重池上鄉錦園村活動斷層監測網,來了解淺層斷層出露於錦園村的活動特性;為了更深入了解淺層地層的岩性與組態,本研究團隊在上盤進行三口岩心構造分析,勾勒出池上斷層在淺層地層的幾何形貌。池上斷層在錦園村受到錦園溪沖積扇作用影響,主斷層在地下30-40米處分為三支斷層,靠近西側的兩支分支斷層其傾角傾東,傾角為34-42°和60-65°,略高於主斷層傾角(30°),最東邊的分支斷層傾角向西16°,由定年資料推斷,池上斷層上盤抬升速率為每年2.3 ± 0.1公分。
除了岩心判釋之外,同時設置地下水觀測網,來紀錄斷層帶上下盤地下水位隨季節的變化,並進一步實施水力試驗以獲取斷層上下盤的滲透係數。結果顯示,在時間域的分析上,上盤的滲透系數在2008年四月到九月其間驟然上升,其結果與池上斷層北邊的微震密度上升趨勢一致,推測微震誘發斷層帶附近新生裂隙,導致地下水流通孔隙增加,進而促使滲透系數上升;就空間分布而言,孔隙水壓在斷層上下盤產生了10米的地下水頭差異,推測為滲透系數的差異和異向性所造成的水力梯度,除了紀錄天然水壓變化,本研究另外致造人為孔隙水壓擾動,利用注水試驗增加斷層帶內的孔隙水壓,並使用傾斜儀紀錄水力梯度變化所造成之地表傾斜,其結果顯示,斷層帶為一個阻水邊界,滲透系數在斷層帶上反映出明顯的異向性,促使地下水流沿著斷層走向流動,更加確認斷層在非固結沉積層的阻水效應。
摘要(英) The Chihshang Fault is one of the most active creeping faults in the world at a rate of 2 cm/yr, which is situated along a plate suture between the Philippine Sea and the Eurasian plates in eastern Taiwan. Near the surface, the Chihshang Fault developed in the Holocene unconsolidated gravel layers. This fault behaviour apparently is be influenced by the hydraulic characteristics around the fault zone and in the vicinity of aquifers.
In this study, we combined a variety of measurements and analyses at the Chihshang Active Fault Observatory (CAFO), including surface-rupture mapping, three shallow borehole core analyses and kinematic analysis of geodetic measurements, in order to decipher the near-surface fault geometry. We found that the Chihshang Fault has a three-branch fault system with a rather diffused fault zone in the Chinyuan alluvial fan at CAFO, which is composed of at least 100 m thick alluvial deposits. Outside of the Chinyuan River channel, the Chihshang Fault exhibits a single fault system. Combining the uplift rate and subsurface profiles from trench excavation, we interpret that the three fault branches locally developed the structure at the uppermost 30-40 m unconsolidated gravel layers during the last few thousand years. Based on the ratio between the levelling vertical displacements and the creep meters and GPS horizontal displacements, we obtained dip angles of 34-42°, 60-65° and 16° for two west-vergent thrusts and an east-vergent backthrust, respectively, for these three branches. By compiling the ages data in the boreholes, trenches and terraces, we estimated a long-term relative uplift rate of 2.3 ± 0.1 cm/yr in the hanging wall of the Chihshang Fault and an average alluvial sedimentation rate of about 1.1 ± 0.1 cm/yr during the past a few thousands years.
In order to better understand how the effects of pore-fluid pressure variations in the aquifer within the alluvial gravels influences the near-surface behavior of the Chihshang Fault, nine observation wells of groundwater were drilled at depths ranging from 30 to 100 m through the aquifer from the footwall to the hanging wall. Monitoring of natural pore pressure variations in piezometers, monthly slug experiments (few seconds), and long duration pumping/injection experiments (hours to days) were carried out during 2007-2011. Together with the subsurface electrical resistivity imaging, surface fracture investigations, and core geological analysis, we identified an aquifer zone that is deformed and fractured by the fault zone. The results showed that the permeability of the fault zone is smaller 1 order than that of the footwall. The variance of permeability caused a 10 meter step of groundwater level from the hanging wall to the footwall in the view of spatial domain. On the other hand, repeated hydraulic tests revealed that the permeability varied with time increased 20 times in the hanging wall from 2007 to 2011. A drastic increase of the permeability in the fault zone was observed from April to September 2008. Two possibilities are interpreted this phenomenon: (1) the increased cumulated earthquake events changed the stress field along the Chihshang Fault and caused the new fractures around the fault zone; (2) the vertical displacement revealed that the dilatation may be happened in the fault zone which increased the porosity to induce a drastic increase of permeability in-situ.
關鍵字(中) ★ 活動斷層
★ 斷層帶滲透率
★ 斷層帶含水層
關鍵字(英) ★ active fault
★ surface tilt
★ fault zone aquifer
★ fault zone permeability
論文目次 Abstract i
Acknowledgements iiv
Content vi
List of figures viii
1. Introduction 1
2. Hydromechanical behavior of fault zones 4
2-1 Structural characteristics of fault zones 4
2-2 Hydromechanical behaviour of fault zones in porous medium 7
2-3 Hydromechanical coupling in the soft sediments 9
2-3-1 Poroelasticity theory 10
2-3-2 Some applications examples of aquifers deformation 14
2-4 In-situ measurements and monitoring Hydromechanical properties in fault zones 15
2-5 The Chihshang Fault, eastern Taiwan 16
2-5-1 General tectonic and geological context of Taiwan 16
2-5-2 Plate suture: the Longitudinal Valley Fault and the Chihshang Fault 18
2-6 Hydrogeological working hypothesis about the Chihshang Fault 23
3. Methodological and transdisciplinary approaches to characterize the Chihshang active Fault 27
3-1 Seismicity in the Chihshang region 28
3-2 Shallow Subsurface Geology 31
3-2-1 Observations from core sampling and trenching 31
3-2-2 Reconstruction of the Holocene evolution of the Chihshang Fault at the Chinyuan site 37
3-2-3 Geophysical images 38
3-3 Hydrogeology 44
3-3-1 Regional hydrogeological context of the Longitudinal Valley 44
3-3-2 Local hydrogeological context in Chihshang 48
3-3-3 Hydraulic Monitoring instrumentation 48
3-3-4 Influence of the fault zone on the piezometric gradients 51
3-4 Hydromechanical experiments in the Chihshang Active Fault Observatory 55
3-4-1 Monthly pulse tests 55
3-4-2 Field descriptions of injection experiments 58
3-4-3 Data processing of tiltmeters 62
3-5 Geodetic networks 64
3-6 Synthesis of shallow structure and hydrogeology from the CAFO 69
2-6-1 Fault dip near the surface 69
2-6-2 Sediments covered the fault zone 70
2-6-3 Distribution of piezometric level across the fault 70
4. Shallow structure and fault architecture of the Chihshang Fault 72
5. Hydromechanical characterization and monitoring of the Chihshang Fault
at shallow depth 85
5-1 Long term Hydromechanical behaviour of the Chihshang Fault 85
5-2 Poroelastic aquifer response associated to the Chihshang fault zone architecture 93
5-2-1 Aquifer hydraulic response to injection and pumping tests 93
5-2-2 Aquifer poroelastic response to injection tests 97
5-3 Conclusions: local hydromechanical response in Chihshang fault zone 104
6. Conclusion 106
Reference 109
參考文獻 [1] Knipe, R.J., The influence of fault zone processes and diagenesis on fluid flow. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development. AAPG Studies in Geology, 36: 135-148, 1993.
[2] Rawling, G.C., Goodwin, L.B. and Wilson, J.L., Internal architecture, permeability structure, and hydrologic significance of contrasting fault zone types. Geology, 27: 43-46, 2001.
[3] Bense, V.F., Berg, E.H.V.d. and Balen, R.T.V., Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 11: 319-332, 2003.
[4] Rojstaczer, S., Wolf, S. and Michel, R., Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373: 237 -239, 1995.
[5] Melchiorre, E.B., Criss, R.E. and Davisson, M.L., Relationship between seismicity and subsurface fluids, central Coast Ranges, California. Journal of Geophysical Research, 104(B-1): 921-939, 1999.
[6] Zoback, M.D., Reservoir Geomechanics, Cambridge University Press, Cambridge Press, 2007.
[7] Boullier, A.M. and Robert, F., Paleoseismic events recorded in Archean gold - quartz vein networks, Val d’Or, Abitibi, Canada. Journal of Structural Geology, 14(2): 161-179, 1992.
[8] Heynekamp, M.R., Goodwin, L.B., Mozley, P.S. and Haneberg, W.C., Controls on fault-zone architecture in poorly lithified sediments, Rio Grande rift, New Mexico: implications for fault zone permeability and fluid flow. In: Haneberg, W. C., Mozley, P. S., Moore, J. C. & Goodwin, L. B. (eds.), Faults and subsurface fluid flow. American Geophysical Union Geophysical Monograph, 113: 27-49, 1999.
[9] Wang, H.F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, 2000.
[10] Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C., Jeng, F.S. and Rau, R.J., Active Fault Creep Variations at Chihshang, Taiwan, Revealed by Creepmeter Monitoring, 1998-2001. J. Geophys. Res., 108(B11), 2003.
[11] Lee, J. C., Chu, H.T., J. Angelier, Hu, J.C., Chen, H.Y., Yu, S.B., Quantitative analysis of co-seismic surface faulting and post-seismic creep accompanying the 2003, Mw=6.5, Chengkung earthquake in eastern Taiwan. J. Geophys. Res., 111(B02405): doi : 10.1029/2005JB003612, 2006.
[12] Mu, C.-H., Angelier, J., Lee, J.-C., Chu, H.-T. and Dong, J.-J., Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan). Journal of Structural Geology, 33(4): 743-755, doi:10.1016/j.jsg.2011.01.015, 2011.
[13] Caine, J.S., Evans, J.P. and Forster, C.B., Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028, doi: 10.1130/0091-7613, 1996.
[14] Faulkner, D.R., Lewis, A.C. and Rutter, E.H., On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367: 235–251, doi:10.1016/S0040-1951(03)00134-3, 2003.
[15] Chester, F.M. and Logan, J.M., Composite planar fabric of gouge from the Punchbowl fault, California. Journal of Structural Geology, 9: 621–634, 1986.
[16] Zoback, M.D., Hickman, S. and Ellsworth, W., Scientific drilling into the San Andreas fault zone. Eos. Transactions American Geophysical Union, 91(22): 197-199, 2010.
[17] Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F.S., E.-C. Yeh, W. Soh, H. Sone, L.-W. Kuo and Wu, H.-Y., Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444: 473-476, doi:10.1038/nature05253, 2006.
[18] Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H. and Ma, K.-F., Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A, Terrestrial Atmospheric and Oceanic Science, 18: 243-269, 2007.
[19] Yeh, E.C., Sone, H., Nakaya, T., Ian, K.H., Song, S.R., Hung, J.H., Lin, W., Hirono, T., Wang, C.Y.,Ma, K.F., Soh, W. and Kinoshita, M., Core description and characteristics of fault zones from the Hole-A of the Taiwan Chelungpu-Fault Drilling Project. Terrestrial Atmospheric and Oceanic Science, 18: 327-357, 2007.
[20] Hung, J.H., Wu, Y.H., Yeh, E.C., Wu, J.C., Subsurface Structure, Physical Properties, and Fault Zone Characteristics in the Scientific Drill Holes of Chelungpu-Fault Drilling Project, Taiwan, Terrestrial Atmospheric and Oceanic Science, 18: 271-293, 2007.
[21] Savage, H.M. and M.L. Cooke, Unlocking the effects of friction on fault damage zone models. Journal of Structural Geology, 32(11): 1732-1741, 2010.
[22] Soliva, R., Maerten, F., J. Petit and Auzias, V., Field evidences for the role of static friction on fracture orientation in extensional relays along strike-slip faults: Comparison with photoelasticity and 3-D numerical modeling. Journal of Structural Geology, 32: 1721-1731, doi:10.1016/j.jsg.2010.01.008, 2010.
[23] Anderson, E.M., The dynamic of faulting. Oliver and Boyd, Edinburgh and London, 1942.
[24] Wilson, J.E., Chester, J.S. and Chester, F.M., Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California. Journal of Structural Geology, 25(11): 1855-1873, 2003.
[25] Cowie, P.A. and Scholz, C.H., Physical explanation for the displacement-length relationship of faults usind a post-yield fracture machanics model. Journal of Structural Geology, 14: 1133-1148, 1992.
[26] Chester, F.M. and Chester, J.S., Stress and deformation along wavy frictional faults. Journal of Geophysical Research - Solid Earth, 105(B10): 23421-23430, doi: 10.1029/2000JB900241, 2000.
[27] Mitchell, T.M. and Faulkner, D.R., The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault zone, northern Chile. Journal of Structural Geology, 31: 802-816, 2009.
[28] Anastasio, D.J., E.A. Erslev and Fisher, D.M., Preface: fault-related folding. Journal of Structural Geology, 19, 1997.
[29] Cosgrove, J. and Ameen, M., A comparison of the geometry, spatial organisation and fracture patterns associated with forced folds and buckle folds, Geological Society of London Special Publication, 169, 7–21, 2000.
[30] Wilkerson, M.S., Fischer, M.P. and T. Apotria, Fault-related folds: the transition from 2-D to 3-D e preface. Journal of Structural Geology, 24(4): 591-592, 2002.
[31] Suppe, J., Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684-721, 1983.
[32] McClay, K.R., Thrust tectonics and hydrocarbon systems. AAPG, Memoir 82: 667, 2004.
[33] Schlische, R.W., Geometry and origin of fault-related folds in extensional settings. AAPG Bulletin e American Association of Petroleum Geologists, 79(11): 1661-1678, 1995.
[34] Harding, T.P., Identification of wrench faults using subsurface structural data: criteria and pitfalls. American Association of Petroleum Geologists Bulletin, 74(10): 1590-1609, 1990.
[35] Cristallini, E.O. and Allmendinger, R.W., Pseudo 3-D modeling of trishear faultpropagation folding. Journal of Structural Geology, 23(12): 1883-1899, 2001.
[36] Schlische, R.W., Withjack, M.O. and Eisenstadt, G., An experimental study of the secondary deformation produced by oblique-slip normal faulting. American Association of Petroleum Geologists Bulletin, 86(5): 885-906, 2002.
[37] Faulkner, D.R., C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557-1575, doi: 10.1016/j.jsg.2010.06.009, 2010.
[38] Tadokoro, K., Ando, M. and Nishigami, K., Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: seismicity and its migration. Journal of Geophysical Research - Solid Earth, 105(B3): 6089-6104, 2000.
[39] Fairley, J.P. and Hinds, J.J., Field observation of fluid circulation patterns in a normal fault system. Geophysical Research Letters, 31: 1-4, 2004.
[40] Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., and Kaus, B.J.P., Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427(6979): 724-727, 2004.
[41] Rowland, J.V. and R.H. Sibson, Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4(4): 259-283, 2004.
[42] Talwani, P., Chen, L. and Gahalaut, K., Seismogenic permeability, k(S). Journal of Geophysical Research - Solid Earth, 112(B7): B07309, doi: 10.1029/2006JB004665, 2007.
[43] Dockrill B. and Shipton Z.K. Structural controls on leakage from a natural CO2 geologic storage site: central Utah, U.S.A. Journal of Structural Geology, 32 (11). 1768-1782, doi:10.1016/j.jsg.2010.01.007, 2010.
[44] Wibberley, C.A.J. and Shimamoto, T., Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1): 59-78, 2003.
[45] Brown, S.R. and Bruhn, R.L., Fluid permeability of deformable fracture networks. Journal of Geophysical Research - Solid Earth, 103(B2): 2489–2500, doi:10.1029/97JB03113, 1998.
[46] Faulkner, D.R. and Rutter, E.H. Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29, 503-506, 2001.
[47] Lunn, R.J., Willson, J.P., Shipton, Z.K. and Moir, H., Simulating brittle fault growth from linkage of preexisting structures. Journal of Geophysical Research - Solid Earth, 113(B7): B07403, doi:10.1029/2007JB005388, 2008.
[48] Uehara, S. and Shimamoto, T., Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics, 378(3-4): 183-195, 2004.
[49] Rutqvist J. and Tsang C.F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology, 62–63, 637–652, 2003.
[50] Rutqvist, J., Birkholzer, J., Cappa, F. and Tsang, C.-F., Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48, 1798–1807, 2007.
[51] Cappa, F. and Rutqvist, J., Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5: 336-346, doi:10.1016/j.ijggc.2010.08.005, 2011.
[52] Hickman, S., Sibson, R. and Bruhn, R., Introduction to special section e mechanical involvement of fluids in faulting. Journal of Geophysical Research - Solid Earth, 100(B7): 12831-12840, 1995.
[53] Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, 1990.
[54] Shapiro, S.A., Huenges, E. and Borm, G., Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131(2): F15-F18, 1997.
[55] Zoback, M.D. and Harjes, H.-P., Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysical Research, 102(B8): 18477-18491, 1997.
[56] Jahr, T., Jentzsch, G., Gebauer, A. and Lau, T., Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the KTB/Germany. Journal of Geophysical Research, 113: B11410, doi:10.1029/2008JB005610, 2008.
[57] Shapiro, S.A., J. Kummerow, C. Dinske, G. Asch, E. Rothert, J. Erzinger, H.-J. Kümpel and Kind, R., Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB) Geophysical Research Letters, 33: L01309, doi:10.1029/2005GL024659, 2006.
[58] McDermott, C. I., Lodemann, M., Ghergut, I., Tenzer, H., Sauter, M., Kolditz, O., Investigation of coupled hydraulic - geomechanical processes at the KTB site: pressure-dependent characteristics of a long-term pump test and elastic interpretation using a geomechanical facies model. Geofluids 6 (1), 67–81, 2006.
[59] Walsh, R., McDermott, C. I., and Kolditz, O., Numerical modeling of stress-permeability coupling in rough fractures., Hydrogeology Journal, 16: 613-627, DOI 10.1007/s10040-007-0254-1, 2008.
[60] Kümpel, H.-J, Grecksch, G., Lehmann, K., Rebscher, D. and Schulze, K. C., Studies of in-situ pore pressure fluctuations at various scales. Oil & Gas Science and Technology-Review IFP, 54: 679, 1999.
[61] Fabian, M. and Kümpel, H.-J., Poroelasticity; observations of anomalous near surface tilt induced by ground water pumping. Journal of Hydrology, 281: 187, 2003.
[62] Urlaub, M. and Fabian, M., Poroelasticity: Finite element modelling of anomalous tilt and pore pressure caused by pumping in a sedimentary half space with fault. Journal of Geodynamics, 51(4): 219-232, 2011.
[63] Rutqvist, J., Barr, D., Datta, R., Gens, A., Millard, M., Olivella, S., Tsang, C.-F. and Tsang, Y., Coupled thermal-hydrological-mechanical analysis of the Yucca Mountain Drift Scale Test—comparison of field results to predictions of four different models. International Journal of Rock Mechanics and Mining Sciences 42: 680-697, 2005.
[64] Rutqvist, J., Ijiri, Y., and Yamamoto, H., Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils, Computers and Geosciences, 37 (6), 751-762, 2011.
[65] Guglielmi, Y., Cappa, F., Rutqvist, J., Tsang, C.-F. and Thoraval, A., Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slope in response to free water-surface movement. International Journal of Rock Mechanics and Mining Sciences, 45(6): 862-878, doi: 10.1016/j.ijrmms.2007.09.010, 2008.
[66] Cappa, F., Guglielmi, Y., Rutqvist, J., Tsang, C.-F. and Thoraval, A., Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses. Water Resources Research, 44(11): W11408, doi:10.1029/2008WR007015, 2008.
[67] Terzaghi, K. Die Berechnung der Durchla‥ssigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. [The calculation of permeability number of the clay out of the process of the hydrodynamic phenomenon tension.] Sitz Akad Wissen Wien Math-naturw Kl, Part Iia 32, 125–138, 1923.
[68] Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164, 1941.
[69] Kümpel, H.-J., Coupled mechanical phenomena in deformable porous media. Modelling coupled phenomena in saturated porous materials. Institute of Fundamental Technological Research, Warsaw, Poland, 20: 351-416. Ambraseys, N.N., Some characteristic features of the Anatolian fault zone. Tectonophysics, 9(2-3): 143-165, 1970, 2004.
[70] Yamashita, T., Pore creation due to fault slip in a fluid‐permeated fault zone and its effect on seismicity: Generation mechanism of earthquake swarm, Pure Appl. Geophys., 155, 625–647, doi:10.1007/s000240050280, 1999.
[71] Miller, S. A., and Nur, A., Permeability as a toggle switch in fluidcontrolled crustal processes, Earth Planet. Sci. Lett., 183, 133–146, 2000.
[72] Goren, L., Aharonov, E., Sparks, D., and Toussaint, R., Pore pressure evolution in deforming granular material: A general formulation and the infinitely stiff approximation, J. Geophys. Res., 115, B09216, doi:10.1029/2009JB007191, 2010.
[73] Kherbouche, R., Shao, J. F., Skoczylas, F., and Henry, J. P., On the poroplastic behavior of porous rocks, Eur. J. Mech. A, Solids, 14(4), 577–587, 1995.
[74] Jahr, T., Letz, H., and Jentzsch, G., Monitoring fluid induced deformation of the earth’s crust: A large scale experiment at the KTB location/German, J. Geodyn., 41(1–3), 190–197, 2006.
[75] Wang, R., and Kümpel, H.-J., Poroelasticity; efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics, 68(2), 705-717, 2003.
[76] Jahr, T., Jentzsch, G., Letz, H., and Sauter, M., Fluid injection and surface deformation at the KTB location: Modelling of expected tilt effects, Geofluids, 5, 20–27, 2005.
[77] Weise, A., Jentzsch, G., Kiviniemi, A., and Kääriäinen, J., Comparison of longperiod tilt measurements: Results from two clinometric stations Metsa‥hovi and Lohja, Finland, J. Geodyn., 27, 237– 257, 1999.
[78] Talwani, P., Cobb, J.S. and Schaeffer, M.F., In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina. Journal of Geophysical Research - Solid Earth, 104(B7): 14993-15003, 1999.
[79] Talwani, P., Chen, L., and Gahalaut, K., Seismogenic permeability, ks, J. Geophys. Res., 112, B07309, doi:10.10ü29/2006JB004665, 2007.
[80] Kümpel, H.-J., Erzinger, J., and Shapiro, S., Two massive hydraulic tests completed in deep KTB borehole. Scientific Drilling 3, 40-42, 2006.
[81] Castillo, D., Hunter, S., Harben, P., Wright, C., Conant, R., and Davis, E., Deep hydraulic fracture imaging: Recent advances in tiltmeter technologies. International Journal of Rock Mechanics and Mining Sciences, 34: 47.e1-47.e9, 1997.
[81] Davis, E., Astakhov, D. and Wright, C., Precise deformation monitoring by high resolution tiltmeters. Geophysical Exploration, 54: 425-432, 2001.
[82] Vasco, D.W., Karasaki, K. and Nakagome, O., Monitoring production using surface deformation: the Hijiori test site and the Okuaizu geothermal field, Japan. Geothermics, 31: 303-342, 2002.
[83] Yu, S.-B., Chen, H.-Y. and Kuo, L.-C., Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274: 41-59, 1997.
[84] Biq, C., Kinematic pattern of Taiwan as an example of actual continent-arc collision. Report of the Seminar on Seismology. US-ROC Cooperative Science Program, 25: 149-166, 1973.
[85] Ho, C.-S., Asynthesis of the geologic evolution of Taiwan. Tectonophysics, 125: 1-16, 1986.
[86] Tsai, Y.-B., Seismotectonics of Taiwan. Tectonophysics, 125: 17-37, 1986.
[87] Lu, C. Y., Neotectonics in the foreland thrust belt of Taiwan, Pet. Geol. Taiwan 29: 1-26, 1994.
[88] Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K., and Chang, C. P., Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica, Tectonophysics 325 1-21, 2000.
[89] Barrier, E. and Angelier, J., Active collision in eastern Taiwan: The Coastal Range, Tectonophysics 125: 39-72, 1986.
[90] Teng, L.-S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183: 57-76, 1990.
[91] Huang, C. Y., Yuan, P. B., and Tsao, S. J., Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis." Geol. Soc. Am. Bull. 118(3/4): 274-288, doi: 10.1130/B25527.1, 2006.
[92] Pelletier, B. and Stephan, J. F., Middle Miocene obduction and late Miocene beginning of collision registered in the Hengchun peninsula: geodynamic implications for the evolution of Taiwan, Tectonophysics 125: 133-160, 1986.
[93] Hsu, T. L., Geology of the Coastal Range, Eastern Taiwan, Bull. Geol. Surv. Taiwan 9: 39-64, 1956.
[94] Biq, C. C., The east Taiwan Rift, Petroleom Geology of Taiwan 4: 93-106, 1965.
[95] Angelier, J., Barrier, E., and Chu, H.-T., Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan, Tectonophysics 125(1-3): 161-178, 1986.
[96] Angelier, J., Chu, H.-T. and Lee, J.-C., Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274: 117-143, 1997.
[97] Yu, S.-B., Jackson, D.D., Yu, G.-K. and Liu, C.-C., Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183: 97-109, 1990.
[98] Lee, J.-C. and Angelier, J., Localisation des déformations actives et traitement des données géodésiques: l’’exemple de la faille de la Vallée Longitudinale, Taiwan. Bull. Soc. géol. France, 164(4): 533-540, 1993.
[99] Kuochen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C. and Chen, W.-S., Relocation of eastern Taiwan earthquakes and tectonic implications. Terr. Atom. Ocean., 15: 647-666, 2004.
[100] Chang, Y.-C., Geoelectric study of the Taitung Longitudinal Valley between Rui-Sui and Chi-Shang, National Central University, Chungli, Taiwan, 2002.
[101] Yu, S.-B., and Kuo, L.-C., Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333: 199-217, 2001.
[102] Angelier, J., Chu, H.-T., Lee, J.-C., Hu, J.-C., Active faulting and earthquake risk: the Chihshang Fault case, Taiwan,. J. Geodynamics., 29: 151–185, 2000.
[103] Yu, S.-B., and Liu, C.-C., Fault creep on the central segment of the longitudinal valley fault, Eastern Taiwan. Proc. Geol. Soc. China, 32(3): 209-231, 1989.
[104] Hsu, T.-L., Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, 1: 95-102, 1962.
[105] York, J. E., Quaternary faulting in eastern Taiwan, Bull. Geol. Surv. Taiwan 25, 63–72, 1976.
[106] Bonilla, M.G., A review of recently active faults in Taiwan. U.S. Geol. Survey Open-File Report, 75-41, 1975.
[107] Shyu, J. B. H., Sieh, K., Chen, Y. G., and Chung, L. H., Geopmorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, Geol. Soc. of Am. Bull. 118(11/12): 1447-1462, doi: 10.1130/B25905.1, 2006.
[108] Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C. and Jeng, F.-S., Continuous monitoring of an active fault in a plate suture zone: A creep meter study of the Chihshang active fault, eastern Taiwan. Tectonophysics, 333(1-2): 219-240, 2001.
[109] Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., and Rau, R. J., Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001, J. Geophys. Res. 108(B11): 25-28, doi: 10.1029/2003JB002394, 2003
[110] Lee, J. C., Chu, H. T., Angelier, J., Hu, J. C., Chen, H. Y., and Yu, S. B., Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw = 6.5, Chengkung earthquake in eastern Taiwan, J. geophys. Res. 111: doi:10.1029/2005JB003612, 2006.
[111] Peyret, M., S. Dominguez, R. Cattin, J. Champenois, M. Leroy, and A. Zajac , Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives, J. Geophys. Res., 116, B03402, doi:10.1029/2010JB007898, 2011.
[112] Lee, J.-C., Angelier, J., Chu, H.-T., Yu, S.-B. and Hu, J.-C., Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: analysis of geodetic data and geological observation. Tectonics, 17(6): 859-871, 1998.
[113] Chang, C.-P. et al., Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth. Planet. Sci. Lett, 214: 115-127, 2003.
[114] Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C. and Jeng, F.-S., Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creep meter study at Chihshang, Taiwan. C.R. Geosciences, 337: 1200-1207, 2005.
[115] Chang, S.-H., Wang, W.-H. and Lee, J.-C., Modeling surface creep of the Chihshang Fault in eastern Taiwan with velocity-strengthening friction. Geophy. Jour. Int, 176(2): 601-613. doi: 10.0000/j.1365-246X.2008.03995.x, 2009.
[116] Roeloffs, E.A., 1998. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. journal of Geophysical Research, 103: 869-889.
[117] Matsumoto, N. and Roeloffs, E.A., Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties. Geophysical Journal International, 155(3): 899-913, 2003
[118] Brodsky, E.E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M., A mechanism for sustained groundwater pressure changes induced by distant earthquakes. journal of Geophysical Research, 108(B8): 2390, doi:10.1029/2002JB002321, 2003.
[119] Chang, C.-P., Angelier, J. and Huang, C.-Y., Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325: 43-62, 2000.
[120] Kuochen, H., Wu, Y.-M., Chen, Y.-G. and Chen, R.-Y., 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures. J. Asian Earth Sci., 31(3): doi:10.1016/j.jseaes.2006.07.028, 2007.
[121] Cheng, S.-N., Yeh, Y.-T. and Yu, M.-S., The 1951 Taitung earthquake in Taiwan. J. Geol. Soc. China, 39(3): 267-285, 1996.
[122] Chen, H.-Y., Yu, S.-B. and Kuo, L.-C., Coseismic and postseismic surface displacements of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake. Earth, Planet and Space, 58: 5-21, 2006.
[123] Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., and Teng, T. L., Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett., 33, L02312, doi:10.1029/2005GL024711, 2006
[124] Hsu, T.-L., Neotectonics of the Longitudinal Valley, Eastern Taiwan. Bull. Geol. Sur. Taiwan, 25: 43-53, 1976.
[125] Chung, L.-H., Surface Rupture Reevaluation of the 1951 Earthquake Sequence in the Middle Longitudinal Valley and Neotectonic Implications, National Taiwan University, Taipei, 138 pp, 2003.
[126] Shyu, J.B.-H., Chung, L.-H., Chen, Y.-G., Lee, J.-C. and Sieh, K., Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31: 317-331, 2007.
[127] Cheng, L. W., Lee, J. C., Hu, J. C., and Chen, H. Y., Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkung Earthquake in eastern Tai¬wan: elastic modeling from inversion of GPS data. Tectonophysics, 466, 335-343, doi: 10.1016/j.tecto.2007.11.021, 2009.
[128] Chen, H.-H. and Rau, R.-J., Earthquake locations and style of faulting in an active arc-continent plate boundary: the Chihshang fault of eastern Taiwan. Eos Trans. AGU, 83(47): Fall Meet. Suppl., Abstract T61B-1277, 2002.
[129] Mozziconacci, L., Delouis, B., Angelier, J., Hu, J. C., and Huang, B. S., Focal mechanisms and seismotectonic stress in North Central Taiwan in relation with the Chi-Chi earthquake. Tectonophysics, Special Issue « Geodynamics and Active Tectonics in East Asia », Hsu S.-K. & Deffontaines B. Eds, 466: 409-426. doi: doi:10.1016/S0040-1951(09)00081-X, 2009.
[130] Chu, Y.-K., Paloseismology of the Chihshang Fault, National Taiwan University, Taipei, Taiwan, 2007.
[131] Chow, J., Angelier, J., Hua, J.-J., Lee, J.-C. and Sun, R., Paleoseismic event and active faulting : from groung penetrating radar and high-resolution seismic reflection profiles across the Chihshang Fault, eastern Taiwan. Tectonophysics, 333: 241-259, 2001.
[132] Tseng, Y., Shih, R. and Chen, W., Imaging the Chihshang Fault in the Longitudinal Valley of Eastern Taiwan by using the Shallow Seismic Reflection Method, AGU fall meeting. NS11E-0829, SFO, 2007.
[133] Papadopulos, I.S. and H.H. Cooper, Drawdown in a well of large diameter, Water Resources Research, vol. 3, no. 1, pp. 241-244, 1967.
[134] Mejías, M., Renard, P., and Glenz, D., Hydraulic testing of low-permeability formations A case study in the granite of Cadalso de los Vidrios, Spain, Engineering Geology 107 (2009) 88–97, 2009.
指導教授 董家鈞、李建成
(Jia-Jyun Dong、Jian-Cheng Lee)
審核日期 2012-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明