參考文獻 |
[1] Knipe, R.J., The influence of fault zone processes and diagenesis on fluid flow. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development. AAPG Studies in Geology, 36: 135-148, 1993.
[2] Rawling, G.C., Goodwin, L.B. and Wilson, J.L., Internal architecture, permeability structure, and hydrologic significance of contrasting fault zone types. Geology, 27: 43-46, 2001.
[3] Bense, V.F., Berg, E.H.V.d. and Balen, R.T.V., Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 11: 319-332, 2003.
[4] Rojstaczer, S., Wolf, S. and Michel, R., Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373: 237 -239, 1995.
[5] Melchiorre, E.B., Criss, R.E. and Davisson, M.L., Relationship between seismicity and subsurface fluids, central Coast Ranges, California. Journal of Geophysical Research, 104(B-1): 921-939, 1999.
[6] Zoback, M.D., Reservoir Geomechanics, Cambridge University Press, Cambridge Press, 2007.
[7] Boullier, A.M. and Robert, F., Paleoseismic events recorded in Archean gold - quartz vein networks, Val d’Or, Abitibi, Canada. Journal of Structural Geology, 14(2): 161-179, 1992.
[8] Heynekamp, M.R., Goodwin, L.B., Mozley, P.S. and Haneberg, W.C., Controls on fault-zone architecture in poorly lithified sediments, Rio Grande rift, New Mexico: implications for fault zone permeability and fluid flow. In: Haneberg, W. C., Mozley, P. S., Moore, J. C. & Goodwin, L. B. (eds.), Faults and subsurface fluid flow. American Geophysical Union Geophysical Monograph, 113: 27-49, 1999.
[9] Wang, H.F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, 2000.
[10] Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C., Jeng, F.S. and Rau, R.J., Active Fault Creep Variations at Chihshang, Taiwan, Revealed by Creepmeter Monitoring, 1998-2001. J. Geophys. Res., 108(B11), 2003.
[11] Lee, J. C., Chu, H.T., J. Angelier, Hu, J.C., Chen, H.Y., Yu, S.B., Quantitative analysis of co-seismic surface faulting and post-seismic creep accompanying the 2003, Mw=6.5, Chengkung earthquake in eastern Taiwan. J. Geophys. Res., 111(B02405): doi : 10.1029/2005JB003612, 2006.
[12] Mu, C.-H., Angelier, J., Lee, J.-C., Chu, H.-T. and Dong, J.-J., Structure and Holocene evolution of an active creeping thrust fault: The Chihshang fault at Chinyuan (Taiwan). Journal of Structural Geology, 33(4): 743-755, doi:10.1016/j.jsg.2011.01.015, 2011.
[13] Caine, J.S., Evans, J.P. and Forster, C.B., Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028, doi: 10.1130/0091-7613, 1996.
[14] Faulkner, D.R., Lewis, A.C. and Rutter, E.H., On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367: 235–251, doi:10.1016/S0040-1951(03)00134-3, 2003.
[15] Chester, F.M. and Logan, J.M., Composite planar fabric of gouge from the Punchbowl fault, California. Journal of Structural Geology, 9: 621–634, 1986.
[16] Zoback, M.D., Hickman, S. and Ellsworth, W., Scientific drilling into the San Andreas fault zone. Eos. Transactions American Geophysical Union, 91(22): 197-199, 2010.
[17] Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F.S., E.-C. Yeh, W. Soh, H. Sone, L.-W. Kuo and Wu, H.-Y., Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444: 473-476, doi:10.1038/nature05253, 2006.
[18] Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H. and Ma, K.-F., Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A, Terrestrial Atmospheric and Oceanic Science, 18: 243-269, 2007.
[19] Yeh, E.C., Sone, H., Nakaya, T., Ian, K.H., Song, S.R., Hung, J.H., Lin, W., Hirono, T., Wang, C.Y.,Ma, K.F., Soh, W. and Kinoshita, M., Core description and characteristics of fault zones from the Hole-A of the Taiwan Chelungpu-Fault Drilling Project. Terrestrial Atmospheric and Oceanic Science, 18: 327-357, 2007.
[20] Hung, J.H., Wu, Y.H., Yeh, E.C., Wu, J.C., Subsurface Structure, Physical Properties, and Fault Zone Characteristics in the Scientific Drill Holes of Chelungpu-Fault Drilling Project, Taiwan, Terrestrial Atmospheric and Oceanic Science, 18: 271-293, 2007.
[21] Savage, H.M. and M.L. Cooke, Unlocking the effects of friction on fault damage zone models. Journal of Structural Geology, 32(11): 1732-1741, 2010.
[22] Soliva, R., Maerten, F., J. Petit and Auzias, V., Field evidences for the role of static friction on fracture orientation in extensional relays along strike-slip faults: Comparison with photoelasticity and 3-D numerical modeling. Journal of Structural Geology, 32: 1721-1731, doi:10.1016/j.jsg.2010.01.008, 2010.
[23] Anderson, E.M., The dynamic of faulting. Oliver and Boyd, Edinburgh and London, 1942.
[24] Wilson, J.E., Chester, J.S. and Chester, F.M., Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas System, California. Journal of Structural Geology, 25(11): 1855-1873, 2003.
[25] Cowie, P.A. and Scholz, C.H., Physical explanation for the displacement-length relationship of faults usind a post-yield fracture machanics model. Journal of Structural Geology, 14: 1133-1148, 1992.
[26] Chester, F.M. and Chester, J.S., Stress and deformation along wavy frictional faults. Journal of Geophysical Research - Solid Earth, 105(B10): 23421-23430, doi: 10.1029/2000JB900241, 2000.
[27] Mitchell, T.M. and Faulkner, D.R., The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault zone, northern Chile. Journal of Structural Geology, 31: 802-816, 2009.
[28] Anastasio, D.J., E.A. Erslev and Fisher, D.M., Preface: fault-related folding. Journal of Structural Geology, 19, 1997.
[29] Cosgrove, J. and Ameen, M., A comparison of the geometry, spatial organisation and fracture patterns associated with forced folds and buckle folds, Geological Society of London Special Publication, 169, 7–21, 2000.
[30] Wilkerson, M.S., Fischer, M.P. and T. Apotria, Fault-related folds: the transition from 2-D to 3-D e preface. Journal of Structural Geology, 24(4): 591-592, 2002.
[31] Suppe, J., Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684-721, 1983.
[32] McClay, K.R., Thrust tectonics and hydrocarbon systems. AAPG, Memoir 82: 667, 2004.
[33] Schlische, R.W., Geometry and origin of fault-related folds in extensional settings. AAPG Bulletin e American Association of Petroleum Geologists, 79(11): 1661-1678, 1995.
[34] Harding, T.P., Identification of wrench faults using subsurface structural data: criteria and pitfalls. American Association of Petroleum Geologists Bulletin, 74(10): 1590-1609, 1990.
[35] Cristallini, E.O. and Allmendinger, R.W., Pseudo 3-D modeling of trishear faultpropagation folding. Journal of Structural Geology, 23(12): 1883-1899, 2001.
[36] Schlische, R.W., Withjack, M.O. and Eisenstadt, G., An experimental study of the secondary deformation produced by oblique-slip normal faulting. American Association of Petroleum Geologists Bulletin, 86(5): 885-906, 2002.
[37] Faulkner, D.R., C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557-1575, doi: 10.1016/j.jsg.2010.06.009, 2010.
[38] Tadokoro, K., Ando, M. and Nishigami, K., Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: seismicity and its migration. Journal of Geophysical Research - Solid Earth, 105(B3): 6089-6104, 2000.
[39] Fairley, J.P. and Hinds, J.J., Field observation of fluid circulation patterns in a normal fault system. Geophysical Research Letters, 31: 1-4, 2004.
[40] Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., and Kaus, B.J.P., Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427(6979): 724-727, 2004.
[41] Rowland, J.V. and R.H. Sibson, Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4(4): 259-283, 2004.
[42] Talwani, P., Chen, L. and Gahalaut, K., Seismogenic permeability, k(S). Journal of Geophysical Research - Solid Earth, 112(B7): B07309, doi: 10.1029/2006JB004665, 2007.
[43] Dockrill B. and Shipton Z.K. Structural controls on leakage from a natural CO2 geologic storage site: central Utah, U.S.A. Journal of Structural Geology, 32 (11). 1768-1782, doi:10.1016/j.jsg.2010.01.007, 2010.
[44] Wibberley, C.A.J. and Shimamoto, T., Internal structure and permeability of major strike-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology, 25(1): 59-78, 2003.
[45] Brown, S.R. and Bruhn, R.L., Fluid permeability of deformable fracture networks. Journal of Geophysical Research - Solid Earth, 103(B2): 2489–2500, doi:10.1029/97JB03113, 1998.
[46] Faulkner, D.R. and Rutter, E.H. Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29, 503-506, 2001.
[47] Lunn, R.J., Willson, J.P., Shipton, Z.K. and Moir, H., Simulating brittle fault growth from linkage of preexisting structures. Journal of Geophysical Research - Solid Earth, 113(B7): B07403, doi:10.1029/2007JB005388, 2008.
[48] Uehara, S. and Shimamoto, T., Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics, 378(3-4): 183-195, 2004.
[49] Rutqvist J. and Tsang C.F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. Journal of Contaminant Hydrology, 62–63, 637–652, 2003.
[50] Rutqvist, J., Birkholzer, J., Cappa, F. and Tsang, C.-F., Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48, 1798–1807, 2007.
[51] Cappa, F. and Rutqvist, J., Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. International Journal of Greenhouse Gas Control, 5: 336-346, doi:10.1016/j.ijggc.2010.08.005, 2011.
[52] Hickman, S., Sibson, R. and Bruhn, R., Introduction to special section e mechanical involvement of fluids in faulting. Journal of Geophysical Research - Solid Earth, 100(B7): 12831-12840, 1995.
[53] Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, 1990.
[54] Shapiro, S.A., Huenges, E. and Borm, G., Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 131(2): F15-F18, 1997.
[55] Zoback, M.D. and Harjes, H.-P., Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysical Research, 102(B8): 18477-18491, 1997.
[56] Jahr, T., Jentzsch, G., Gebauer, A. and Lau, T., Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the KTB/Germany. Journal of Geophysical Research, 113: B11410, doi:10.1029/2008JB005610, 2008.
[57] Shapiro, S.A., J. Kummerow, C. Dinske, G. Asch, E. Rothert, J. Erzinger, H.-J. Kümpel and Kind, R., Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB) Geophysical Research Letters, 33: L01309, doi:10.1029/2005GL024659, 2006.
[58] McDermott, C. I., Lodemann, M., Ghergut, I., Tenzer, H., Sauter, M., Kolditz, O., Investigation of coupled hydraulic - geomechanical processes at the KTB site: pressure-dependent characteristics of a long-term pump test and elastic interpretation using a geomechanical facies model. Geofluids 6 (1), 67–81, 2006.
[59] Walsh, R., McDermott, C. I., and Kolditz, O., Numerical modeling of stress-permeability coupling in rough fractures., Hydrogeology Journal, 16: 613-627, DOI 10.1007/s10040-007-0254-1, 2008.
[60] Kümpel, H.-J, Grecksch, G., Lehmann, K., Rebscher, D. and Schulze, K. C., Studies of in-situ pore pressure fluctuations at various scales. Oil & Gas Science and Technology-Review IFP, 54: 679, 1999.
[61] Fabian, M. and Kümpel, H.-J., Poroelasticity; observations of anomalous near surface tilt induced by ground water pumping. Journal of Hydrology, 281: 187, 2003.
[62] Urlaub, M. and Fabian, M., Poroelasticity: Finite element modelling of anomalous tilt and pore pressure caused by pumping in a sedimentary half space with fault. Journal of Geodynamics, 51(4): 219-232, 2011.
[63] Rutqvist, J., Barr, D., Datta, R., Gens, A., Millard, M., Olivella, S., Tsang, C.-F. and Tsang, Y., Coupled thermal-hydrological-mechanical analysis of the Yucca Mountain Drift Scale Test—comparison of field results to predictions of four different models. International Journal of Rock Mechanics and Mining Sciences 42: 680-697, 2005.
[64] Rutqvist, J., Ijiri, Y., and Yamamoto, H., Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils, Computers and Geosciences, 37 (6), 751-762, 2011.
[65] Guglielmi, Y., Cappa, F., Rutqvist, J., Tsang, C.-F. and Thoraval, A., Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slope in response to free water-surface movement. International Journal of Rock Mechanics and Mining Sciences, 45(6): 862-878, doi: 10.1016/j.ijrmms.2007.09.010, 2008.
[66] Cappa, F., Guglielmi, Y., Rutqvist, J., Tsang, C.-F. and Thoraval, A., Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses. Water Resources Research, 44(11): W11408, doi:10.1029/2008WR007015, 2008.
[67] Terzaghi, K. Die Berechnung der Durchla‥ssigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. [The calculation of permeability number of the clay out of the process of the hydrodynamic phenomenon tension.] Sitz Akad Wissen Wien Math-naturw Kl, Part Iia 32, 125–138, 1923.
[68] Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164, 1941.
[69] Kümpel, H.-J., Coupled mechanical phenomena in deformable porous media. Modelling coupled phenomena in saturated porous materials. Institute of Fundamental Technological Research, Warsaw, Poland, 20: 351-416. Ambraseys, N.N., Some characteristic features of the Anatolian fault zone. Tectonophysics, 9(2-3): 143-165, 1970, 2004.
[70] Yamashita, T., Pore creation due to fault slip in a fluid‐permeated fault zone and its effect on seismicity: Generation mechanism of earthquake swarm, Pure Appl. Geophys., 155, 625–647, doi:10.1007/s000240050280, 1999.
[71] Miller, S. A., and Nur, A., Permeability as a toggle switch in fluidcontrolled crustal processes, Earth Planet. Sci. Lett., 183, 133–146, 2000.
[72] Goren, L., Aharonov, E., Sparks, D., and Toussaint, R., Pore pressure evolution in deforming granular material: A general formulation and the infinitely stiff approximation, J. Geophys. Res., 115, B09216, doi:10.1029/2009JB007191, 2010.
[73] Kherbouche, R., Shao, J. F., Skoczylas, F., and Henry, J. P., On the poroplastic behavior of porous rocks, Eur. J. Mech. A, Solids, 14(4), 577–587, 1995.
[74] Jahr, T., Letz, H., and Jentzsch, G., Monitoring fluid induced deformation of the earth’s crust: A large scale experiment at the KTB location/German, J. Geodyn., 41(1–3), 190–197, 2006.
[75] Wang, R., and Kümpel, H.-J., Poroelasticity; efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics, 68(2), 705-717, 2003.
[76] Jahr, T., Jentzsch, G., Letz, H., and Sauter, M., Fluid injection and surface deformation at the KTB location: Modelling of expected tilt effects, Geofluids, 5, 20–27, 2005.
[77] Weise, A., Jentzsch, G., Kiviniemi, A., and Kääriäinen, J., Comparison of longperiod tilt measurements: Results from two clinometric stations Metsa‥hovi and Lohja, Finland, J. Geodyn., 27, 237– 257, 1999.
[78] Talwani, P., Cobb, J.S. and Schaeffer, M.F., In situ measurements of hydraulic properties of a shear zone in northwestern South Carolina. Journal of Geophysical Research - Solid Earth, 104(B7): 14993-15003, 1999.
[79] Talwani, P., Chen, L., and Gahalaut, K., Seismogenic permeability, ks, J. Geophys. Res., 112, B07309, doi:10.10ü29/2006JB004665, 2007.
[80] Kümpel, H.-J., Erzinger, J., and Shapiro, S., Two massive hydraulic tests completed in deep KTB borehole. Scientific Drilling 3, 40-42, 2006.
[81] Castillo, D., Hunter, S., Harben, P., Wright, C., Conant, R., and Davis, E., Deep hydraulic fracture imaging: Recent advances in tiltmeter technologies. International Journal of Rock Mechanics and Mining Sciences, 34: 47.e1-47.e9, 1997.
[81] Davis, E., Astakhov, D. and Wright, C., Precise deformation monitoring by high resolution tiltmeters. Geophysical Exploration, 54: 425-432, 2001.
[82] Vasco, D.W., Karasaki, K. and Nakagome, O., Monitoring production using surface deformation: the Hijiori test site and the Okuaizu geothermal field, Japan. Geothermics, 31: 303-342, 2002.
[83] Yu, S.-B., Chen, H.-Y. and Kuo, L.-C., Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274: 41-59, 1997.
[84] Biq, C., Kinematic pattern of Taiwan as an example of actual continent-arc collision. Report of the Seminar on Seismology. US-ROC Cooperative Science Program, 25: 149-166, 1973.
[85] Ho, C.-S., Asynthesis of the geologic evolution of Taiwan. Tectonophysics, 125: 1-16, 1986.
[86] Tsai, Y.-B., Seismotectonics of Taiwan. Tectonophysics, 125: 17-37, 1986.
[87] Lu, C. Y., Neotectonics in the foreland thrust belt of Taiwan, Pet. Geol. Taiwan 29: 1-26, 1994.
[88] Huang, C. Y., Yuan, P. B., Lin, C. W., Wang, T. K., and Chang, C. P., Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica, Tectonophysics 325 1-21, 2000.
[89] Barrier, E. and Angelier, J., Active collision in eastern Taiwan: The Coastal Range, Tectonophysics 125: 39-72, 1986.
[90] Teng, L.-S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183: 57-76, 1990.
[91] Huang, C. Y., Yuan, P. B., and Tsao, S. J., Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis." Geol. Soc. Am. Bull. 118(3/4): 274-288, doi: 10.1130/B25527.1, 2006.
[92] Pelletier, B. and Stephan, J. F., Middle Miocene obduction and late Miocene beginning of collision registered in the Hengchun peninsula: geodynamic implications for the evolution of Taiwan, Tectonophysics 125: 133-160, 1986.
[93] Hsu, T. L., Geology of the Coastal Range, Eastern Taiwan, Bull. Geol. Surv. Taiwan 9: 39-64, 1956.
[94] Biq, C. C., The east Taiwan Rift, Petroleom Geology of Taiwan 4: 93-106, 1965.
[95] Angelier, J., Barrier, E., and Chu, H.-T., Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan, Tectonophysics 125(1-3): 161-178, 1986.
[96] Angelier, J., Chu, H.-T. and Lee, J.-C., Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274: 117-143, 1997.
[97] Yu, S.-B., Jackson, D.D., Yu, G.-K. and Liu, C.-C., Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183: 97-109, 1990.
[98] Lee, J.-C. and Angelier, J., Localisation des déformations actives et traitement des données géodésiques: l’’exemple de la faille de la Vallée Longitudinale, Taiwan. Bull. Soc. géol. France, 164(4): 533-540, 1993.
[99] Kuochen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C. and Chen, W.-S., Relocation of eastern Taiwan earthquakes and tectonic implications. Terr. Atom. Ocean., 15: 647-666, 2004.
[100] Chang, Y.-C., Geoelectric study of the Taitung Longitudinal Valley between Rui-Sui and Chi-Shang, National Central University, Chungli, Taiwan, 2002.
[101] Yu, S.-B., and Kuo, L.-C., Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333: 199-217, 2001.
[102] Angelier, J., Chu, H.-T., Lee, J.-C., Hu, J.-C., Active faulting and earthquake risk: the Chihshang Fault case, Taiwan,. J. Geodynamics., 29: 151–185, 2000.
[103] Yu, S.-B., and Liu, C.-C., Fault creep on the central segment of the longitudinal valley fault, Eastern Taiwan. Proc. Geol. Soc. China, 32(3): 209-231, 1989.
[104] Hsu, T.-L., Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, 1: 95-102, 1962.
[105] York, J. E., Quaternary faulting in eastern Taiwan, Bull. Geol. Surv. Taiwan 25, 63–72, 1976.
[106] Bonilla, M.G., A review of recently active faults in Taiwan. U.S. Geol. Survey Open-File Report, 75-41, 1975.
[107] Shyu, J. B. H., Sieh, K., Chen, Y. G., and Chung, L. H., Geopmorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, Geol. Soc. of Am. Bull. 118(11/12): 1447-1462, doi: 10.1130/B25905.1, 2006.
[108] Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C. and Jeng, F.-S., Continuous monitoring of an active fault in a plate suture zone: A creep meter study of the Chihshang active fault, eastern Taiwan. Tectonophysics, 333(1-2): 219-240, 2001.
[109] Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., and Rau, R. J., Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001, J. Geophys. Res. 108(B11): 25-28, doi: 10.1029/2003JB002394, 2003
[110] Lee, J. C., Chu, H. T., Angelier, J., Hu, J. C., Chen, H. Y., and Yu, S. B., Quantitative analysis of surface coseismic faulting and postseismic creep accompanying the 2003, Mw = 6.5, Chengkung earthquake in eastern Taiwan, J. geophys. Res. 111: doi:10.1029/2005JB003612, 2006.
[111] Peyret, M., S. Dominguez, R. Cattin, J. Champenois, M. Leroy, and A. Zajac , Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives, J. Geophys. Res., 116, B03402, doi:10.1029/2010JB007898, 2011.
[112] Lee, J.-C., Angelier, J., Chu, H.-T., Yu, S.-B. and Hu, J.-C., Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: analysis of geodetic data and geological observation. Tectonics, 17(6): 859-871, 1998.
[113] Chang, C.-P. et al., Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth. Planet. Sci. Lett, 214: 115-127, 2003.
[114] Lee, J.-C., Angelier, J., Chu, H.-T., Hu, J.-C. and Jeng, F.-S., Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creep meter study at Chihshang, Taiwan. C.R. Geosciences, 337: 1200-1207, 2005.
[115] Chang, S.-H., Wang, W.-H. and Lee, J.-C., Modeling surface creep of the Chihshang Fault in eastern Taiwan with velocity-strengthening friction. Geophy. Jour. Int, 176(2): 601-613. doi: 10.0000/j.1365-246X.2008.03995.x, 2009.
[116] Roeloffs, E.A., 1998. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. journal of Geophysical Research, 103: 869-889.
[117] Matsumoto, N. and Roeloffs, E.A., Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties. Geophysical Journal International, 155(3): 899-913, 2003
[118] Brodsky, E.E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M., A mechanism for sustained groundwater pressure changes induced by distant earthquakes. journal of Geophysical Research, 108(B8): 2390, doi:10.1029/2002JB002321, 2003.
[119] Chang, C.-P., Angelier, J. and Huang, C.-Y., Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325: 43-62, 2000.
[120] Kuochen, H., Wu, Y.-M., Chen, Y.-G. and Chen, R.-Y., 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures. J. Asian Earth Sci., 31(3): doi:10.1016/j.jseaes.2006.07.028, 2007.
[121] Cheng, S.-N., Yeh, Y.-T. and Yu, M.-S., The 1951 Taitung earthquake in Taiwan. J. Geol. Soc. China, 39(3): 267-285, 1996.
[122] Chen, H.-Y., Yu, S.-B. and Kuo, L.-C., Coseismic and postseismic surface displacements of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake. Earth, Planet and Space, 58: 5-21, 2006.
[123] Wu, Y. M., Chen, Y. G., Shin, T. C., Kuochen, H., Hou, C. S., Hu, J. C., Chang, C. H., Wu, C. F., and Teng, T. L., Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett., 33, L02312, doi:10.1029/2005GL024711, 2006
[124] Hsu, T.-L., Neotectonics of the Longitudinal Valley, Eastern Taiwan. Bull. Geol. Sur. Taiwan, 25: 43-53, 1976.
[125] Chung, L.-H., Surface Rupture Reevaluation of the 1951 Earthquake Sequence in the Middle Longitudinal Valley and Neotectonic Implications, National Taiwan University, Taipei, 138 pp, 2003.
[126] Shyu, J.B.-H., Chung, L.-H., Chen, Y.-G., Lee, J.-C. and Sieh, K., Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31: 317-331, 2007.
[127] Cheng, L. W., Lee, J. C., Hu, J. C., and Chen, H. Y., Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkung Earthquake in eastern Tai¬wan: elastic modeling from inversion of GPS data. Tectonophysics, 466, 335-343, doi: 10.1016/j.tecto.2007.11.021, 2009.
[128] Chen, H.-H. and Rau, R.-J., Earthquake locations and style of faulting in an active arc-continent plate boundary: the Chihshang fault of eastern Taiwan. Eos Trans. AGU, 83(47): Fall Meet. Suppl., Abstract T61B-1277, 2002.
[129] Mozziconacci, L., Delouis, B., Angelier, J., Hu, J. C., and Huang, B. S., Focal mechanisms and seismotectonic stress in North Central Taiwan in relation with the Chi-Chi earthquake. Tectonophysics, Special Issue « Geodynamics and Active Tectonics in East Asia », Hsu S.-K. & Deffontaines B. Eds, 466: 409-426. doi: doi:10.1016/S0040-1951(09)00081-X, 2009.
[130] Chu, Y.-K., Paloseismology of the Chihshang Fault, National Taiwan University, Taipei, Taiwan, 2007.
[131] Chow, J., Angelier, J., Hua, J.-J., Lee, J.-C. and Sun, R., Paleoseismic event and active faulting : from groung penetrating radar and high-resolution seismic reflection profiles across the Chihshang Fault, eastern Taiwan. Tectonophysics, 333: 241-259, 2001.
[132] Tseng, Y., Shih, R. and Chen, W., Imaging the Chihshang Fault in the Longitudinal Valley of Eastern Taiwan by using the Shallow Seismic Reflection Method, AGU fall meeting. NS11E-0829, SFO, 2007.
[133] Papadopulos, I.S. and H.H. Cooper, Drawdown in a well of large diameter, Water Resources Research, vol. 3, no. 1, pp. 241-244, 1967.
[134] Mejías, M., Renard, P., and Glenz, D., Hydraulic testing of low-permeability formations A case study in the granite of Cadalso de los Vidrios, Spain, Engineering Geology 107 (2009) 88–97, 2009.
|