博碩士論文 996204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.144.3.63
姓名 劉正隆(Cheng-lung Liu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 由岩體強度、坡度與坡高反算岩坡曾承受之地震力係數
(Back calculating the seismic coefficient from the strength, slope and height of rock slopes)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 車籠埔斷層北段之地下構造研究
★ 運用類神經網路進行地震誘發山崩之潛感分析★ 地形地質均質區劃分與山崩因子探討
★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討
★ 軟弱沉積岩層滲透異向性之探討★ 由世界應力量測資料探討不同地體構造區的應力特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在地質營力的作用下,地殼抬升與侵蝕造成地形起伏,隨著地形越陡峭,剝蝕率也逐漸增加,直到抬升速率與剝蝕率達平衡,此時的地形即為臨界穩定地形。而剝蝕作用主要有三類,分別為風化、山崩及侵蝕。山崩為構造活動劇烈之地區主要的剝蝕作用,又山崩的發生與岩體強度密不可分,因此有許多探討地形與岩體強度關係之研究。除了岩體強度外,地震力亦是影響邊坡穩定的外在因素,故地形起伏也一定程度記錄了地震的影響。因此,研究區域選擇於已呈臨界穩定地形的臺灣中部,透過野外調查與室內實驗估計岩體強度,假設垂直地震力係數為水平的1/2進行邊坡穩定分析,逆分析具代表性之岩坡於臨界穩定下可承受之地震力係數。結果顯示研究區可能承受之最大水平地震力係數為0.50~0.61,考慮邊坡擬靜力地震力係數之平均值一般為尖峰地震力係數之1/2,此一範圍大於大部分與測試區同屬斷層上盤之集集地震強震記錄(水平地震力係數0.105~0.625),符合本研究逆分析結果應為該研究區曾承受之地震力係數的上限,顯示由岩體強度、坡度與坡高反算岩坡曾承受之地震力係數具可行性。若考慮本案例參數的不確定性,逆分析結果可產生±65%的變化。另外,透過參數敏感度分析,發現地質強度指標(GSI)對於地震力係數逆分析之敏感度最高,孔隙水壓比(Ru)居次,單壓強度(UCS)與岩性係數(mi)相對較不敏感。
摘要(英) The maximum stable relief is defined as the balance of topography which the denudation rates equal to uplift rates. In active orogen, the denudation rate is highly correlated to with landslides. For non-structural controlled landslide, rock mass strength is a key factor dominating the slope stability. Therefore, there is a close linkage between rock mass strength and relief in active orogen region. Furthermore, seismic forces also play an important role in slope stability. In this study, we selected a stable relief region located in central Taiwan. The rock mass strength of representative rock slopes was estimated from field investigations and laboratory experiments. Subsequently, we back calculated the upper bound of seismic coefficient through slope stability analysis. Results show that the seismic coefficients(0.50~0.61)are greater than most of the strong motion records (seismic coefficient 0.105~0.625)on the hanging wall near the research area during the Chi-Chi earthquake. The results show the seismic coefficients are upper bound of the study area which indicates that the back calculated seismic coefficients are reasonable. The results also show ±65% deviation if the uncertainty of all parameters is considered. According to parameter study, the GSI is the most sensitive parameter influencing the back calculate results of seismic coefficient.
關鍵字(中) ★ 岩體強度
★ 坡高
★ 坡度
★ 地震力係數
關鍵字(英) ★ seismic coefficient
★ rock mass strength
★ slope angle
★ slope height
論文目次 中 文 摘 要 i
英 文 摘 要 ii
誌 謝 iii
目 錄 iv
圖 目 錄 vii
表 目 錄 x
符 號 說 明 xi
一、 緒論 1
1-1 研究動機與目的 1
1-2 研究流程 6
1-3 論文架構 8
二、 文獻回顧 9
2-1 岩體強度與臨界穩定地形 9
2-2 邊坡反應曲線 12
2-3 邊坡穩定擬靜力分析 14
2-4 岩體強度Hoek and Brown破壞準則 19
2-5 地質強度指標GSI與岩性參數 mi 23
2-6 根據Hoek-Brown破壞準則估計Mohr-Coulomb破壞準則等值強度參數 33
2-7 邊坡孔隙水壓比 34
三、 研究方法 38
3-1 代表性地形剖面選擇 38
3-2 邊坡極限平衡分析程式SLIDE5.0 39
3-3 強度參數取得 40
3-3-1 單軸壓縮強度 σci 40
3-3-2 地質強度指標GSI 41
3-3-3 岩性參數 mi 45
3-4 地震力係數與孔隙水壓比 49
3-4-1 地震力係數 49
3-4-2 孔隙水壓 49
四、 結果 51
4-1 參數敏感度分析 52
4-1-1 坡高200m之邊坡敏感度分析 52
4-1-2 坡高700m之邊坡敏感度分析 53
4-1-3 坡高1500m之邊坡敏感度分析 53
4-2 地震力係數逆分析 56
4-2-1 野外調查結果 56
4-2-2 單壓強度 σci與單位重 γ 57
4-2-3 調查點處之代表性邊坡坡度及坡高 59
4-2-4 地震力係數逆分析結果與驗證 61
五、 討論 65
5-1 垂直與水平地震力係數比之假設合理性與對逆分析結果之影響 65
5-2 由地形及岩體強度逆分析水平地震力係數之不確定性分析 66
5-2-1 地質強度指標(GSI)評估方法造成之不確定性 66
5-2-2 單壓強度(UCS)之變異性造成之不確定性 66
5-2-3 岩性參數( mi)之變異性造成之不確定性 66
5-2-4 孔隙水壓比(Ru)之變異性造成之不確定性 67
5-3 以簡化之地形剖面進行地震力係數逆分析之影響 71
5-4 與其他逆分析地震力係數之方法比較 71
5-5 參數敏感度分析之相關討論 72
5-4-1 地質強度指標GSI 73
5-4-2 岩性參數 mi 74
六、 結論與建議 80
6-1 結論 80
6-2 建議 81
參 考 文 獻 82
附 錄 一 RMR評分表(1989年版) 90
附 錄 二 Q法評分表 91
附 錄 三 野外調查露頭照片 95
附 錄 四 GSI野外調查記錄 98
附 錄 五 FRMR、FQ與 FRMi 之讀取記錄 104
附 錄 六 無圍壓單軸壓縮試驗資料 110
附 錄 七 各調查點之地形圖與代表性剖面選擇 111
附 錄 八 各調查點附近之代表性剖面 113
附 錄 九 各調查點之岩坡穩定立體投影分析 115
附 錄 十 1999年集集地震在東西向、南北向或垂直向任一方向之尖峰加速度超過0.18g之測站記錄 116
參考文獻 ﹝1﹞ Montgomery, D.R. and Brandon, M.T., “Topographic controls on erosion rates in tectonically active mountain ranges”, Earth and Planetary Science Letters, Vol. 201, pp. 481-489, 2002.
﹝2﹞ Montgomery, D.R., “Slope Distributions, Threshold Hillslopes, and Steady-state Topography”, American Journal of Science, Vol. 301, pp. 432-454, 2001.
﹝3﹞ Skinner, B.J. and Porter, S.C., Physical Geology, John Wiley and Sons Incorporation, New York, 1987.
﹝4﹞ Korup, O., Clague, J.J., Hermanns, R.L., Hewitt, K., Strom, A.L. and Weidinger, J.T., “Giant landslides, topography, and erosion”, Earth and Planetary Science Letters, Vol. 261, pp. 578-589, 2007.
﹝5﹞ Schmidt, K.M. and Montgomery, D.R., “Limits to relief”, Science, Vol. 270, pp. 617-620, October 1995.
﹝6﹞ Bigot-Cormier, F. and Montgomery, D.R., “Valles Marineris landslides: Evidence for a strength limit to Martian relief?”, Earth and Planetary Science Letters, Vol. 260, pp. 179-186, 2007.
﹝7﹞ Schultz, R.A., “Stability of rock slopes in Valles Marineris, Mars”, Geophysical Research Letters, Vol. 29(19), 2002.
﹝8﹞ Moon, B.P. and Selby, M.J., “Rock Mass Strength and Scarp Forms in Southern Africa”, Geografiska Annaler, Series A, Physical Geography, Vol. 65, pp. 135-145, 1983.
﹝9﹞ Haines, A. and Terbrugge, P.J., “Preliminary estimation of rock slope stability using rock mass classification systems”, 7th International Congress International Society Rock Mechanics, Vol. 2, pp. 887-892, Aachen, Germany, 1991.
﹝10﹞ Duran, A. and Douglas, K., “Do slopes designed with empirical rock mass strength criteria stand up?”, 9th International Congress International Society Rock Mechanics, Vol. 1, pp. 87-90, Paris, France, 1999.
﹝11﹞ Culmann, C., Die graphische static, Meyer and Zeller, Zurich, Switzerland, 1875.
﹝12﹞ Schmidt, K.M., “Mountain Scale Strength Properties, Deep-Seated Landsliding, and Relief Limits”, University of Washington, Master thesis, 1994.
﹝13﹞ Hoek, E. and Bray, J.W., Rock Slope Engineering, Institute of Mining and Metallurgy, London, 1977.
﹝14﹞ Suppe, J., “Mechanics of mountain building and metamorphism in Taiwan”, Memoir of the Geological Society of China, Vol. 4, pp. 67-89, October 1981.
﹝15﹞ Li, Y.H., “Denudation of Taiwan island since the Pliocene epoch”, Geology, Vol. 4, pp. 105-107, February 1976.
﹝16﹞ Seno, T., “The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate”, Tectonophysics, Vol. 42, pp. 209-226, 1977.
﹝17﹞ 李春明,「以岩體分類探討非構造性控制破壞之岩坡最陡安全開挖坡度」,國立中央大學,碩士論文,2004年。
﹝18﹞ 蘇意筑,「利用坡高與坡角反衍岩體強度」,國立中央大學,碩士論文,2011年。
﹝19﹞ Fellinius, W., “Calculations of stability of earth dams”, 2nd Congress of Large Dams, Washington D.C., 1936.
﹝20﹞ Bishop, A.W., “The use of the slip circle in the stability analysis of slopes”, Geotechnique, Vol. 5, pp. 7-17, 1955.
﹝21﹞ Janbu, N., “Application of composite slip surface for stability analysis”, European Conference on Stability of Earth Slopes, Stockholm, Sweden, 1954.
﹝22﹞ Spencer, E., “A method of analysis of stability of embankments assuming parallel inter-slice forces”, Geotechnique, Vol. 17, pp. 11-26, 1967.
﹝23﹞ Morgenstern, N.R. and Price, V.E., “Analysis of stability of general slip surfaces”, Geotechnique, Vol. 15, pp. 70-93, 1965.
﹝24﹞ Terzhagi, K., Mechanism of landslides, Application of geology to engineering practice, Paige, S., Geological Society of America, New York, 1950.
﹝25﹞ Jibson, R.W., “Methods for assessing the stability of slopes during earthquakes—A retrospective”, Engineering Geology, Vol. 122, pp. 43-50, 2011
﹝26﹞ 劉坤松、蔡義本和辛在勤,「台灣淺源地震強震地動衰減關係式之研究」,1999中國地球物理學會成果發表會論文集,1999年。
﹝27﹞ Bard, P.Y., “Diffracted waves and displace field over two-dimensional elevated topographies”, Geophysical Journal of the Royal Astronomical Society, Vol. 71, pp. 731-760, 1982.
﹝28﹞ Choi, Y., Stewart, J.P. and Graves, R.W., “Empirical Model for Basin Effects Accounts for Basin Depth and Source Location”, Bulletin of the Seismological Society of America, Vol. 95(4), pp. 1412-1427, 2005.
﹝29﹞ Keefer, D.K., “Landslides Caused by Earthquakes”, Geological Society of America Bulletin, Vol. 95, pp. 406-421, 1984.
﹝30﹞ Athanasopoulos, G.A., Pelekis, P.C. and Leonidou, E.A., “Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake”, Soil Dynamics and Earthquake Engineering, Vol. 18, pp. 135-149, 1999.
﹝31﹞ Jibson, R., Summary of research on the effects of topographic amplification of earthquake shaking on slope stability, US Geological Survey, Open-file Report 87-268, Menlo Park, California, 1987.
﹝32﹞ Meunier, P., Hovius, N. and Haines, J.A., “Topographic site effects and the location of earthquake induced landslides”, Earth and Planetary Science Letters, Vol. 275, pp. 221-232, 2008.
﹝33﹞ Seed, H.B., “Considerations in the earthquake-resistant design of earth and rockfill dams”, Geotechnique, Vol. 29, 215-263, 1979.
﹝34﹞ Marcuson, W.F., “Moderator’’s report for session on Earth Dams and Stability of Slopes under Dynamic Loads”, International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp. 1175, university of Missouri, Saint Louis, 1981.
﹝35﹞ Hynes-Griffin, M.E. and Franklin, A.G., Rationalizing the Seismic Coefficient Method, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1984.
﹝36﹞ Sarma, S.K., “Seismic Stability of Earth Dams and Embankments”, Geotechnique, Vol. 25(4), pp. 743-761.
﹝37﹞ Kramer, S.L., Geotechnical earthquake engineering, Prentice-Hall, New jersey, 1996.
﹝38﹞ US Army Corps of Engineers, Engineering and design of retaining and flood walls, 1989.
﹝39﹞ Indian Institute of Technology Kanpur and Gujarat State Disaster Mitigation Authority, Guidelines for seismic design of earth dams and embankments, 2005.
﹝40﹞ Gazetas, G., Dakoulas, P. and Dennehy, K., “Empirical seismic design method for waterfront anchored sheetpile walls”, Proceedings of the ASCE specialty conference on design and performance of earth retaining structures, Vol. 25, pp. 232-250, 1990.
﹝41﹞ Kavazanjian, E., “Hanshin Earthquake-Reply”, Geotechnical Bulletin Board, NSF Earthquake Hazard Mitigation Program, February, 1995.
﹝42﹞ Ling, H.I. and Leshchinsky, D., “Effects of vertical acceleration on seismic design of geosynthetic-reinforced soil structures”, Geotechnique, Vol. 48(3), pp. 347-373, 1998.
﹝43﹞ Hoek, E. and Brown, E.T., Underground Excavations in Rock, pp. 527, Institution of Mining and Metallurgy, London, 1980.
﹝44﹞ Hoek, E. and Brown, E.T., Empirical strength criterion for rock masses, Journal of the Geotechnical Engineering Division, Vol. 106(GT9), pp. 1013-1035, 1980.
﹝45﹞ Hoek, E., Rock Mechanics in Engineering Practice, pp. 99-124., Stagg, K.G. and Zienkiewicz, O.C., John Wiley, London, 1968.
﹝46﹞ Brown, E.T., “Strength of models of rock with intermittent joints”, Journal of the Soil Mechanics and Foundations Division, Vol. 96(SM6), pp. 1935-1949., 1970.
﹝47﹞ Hoek, E. and Brown, E.T., “The Hoek-Brown failure criterion - a 1988 update”, 15th Canadian Rock Mechanics Symposium, pp. 31-38., Department of Civil Engineering, University of Toronto, Toronto, 1988.
﹝48﹞ Bieniawski, Z.T., Exploration for rock engineering, Vol. 1, pp.97-106, AA Balkema, Rotterdam, 1976.
﹝49﹞ Hoek, E., Wood, D. and Shah, S. “A modified Hoek-Brown criterion for jointed rock masses”, ISRM Symposium, pp. 209-214, British Geotechnical Society, London, 1992.
﹝50﹞ Hoek, E., “Strength of rock and rock masses”, ISRM News Journal, Vol. 2(2), pp.4-16, 1994.
﹝51﹞ Hoek, E., Kaiser, P.K. and Bawden, W.F., Support of Underground Excavations in Hard Rock, Balkema, Rotterdam, 1995.
﹝52﹞ Hoek, E., Carranza-Torres, C. and Corkum, B., “Hoek–Brown failure criterion – 2002 edition”, 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference, vol. 1, pp. 267-273, University of Toronto, Toronto, 2002.
﹝53﹞ Hoek, E. and Marinos, P., “A brief history of the development of the Hoek–Brown failure criterion”, Soils and Rocks, No. 2, 2007.
﹝54﹞ Marinos, P. and Hoek, E., “Estimating the geotechnical properties of heterogeneous rock masses such as flysch”, Bulletin of Engineering Geology and the Environment, Vol. 60(2), pp. 85-92, 2001.
﹝55﹞ Bieniawski, Z.T., “Engineering classification of jointed rock masses”, Civil Engineer in South Africa, Vol. 15, pp. 353-343, 1973.
﹝56﹞ Barton, N., Lein, R. and Lunde, J., “Engineering classification of rock masses for the design of tunnel support”, Rock Mechanics, Vol. 6, pp. 189-236, 1974.
﹝57﹞ Bieniawski, Z.T., Engineering rock mass classifications, John Wiley and Sons, New York, 1989.
﹝58﹞ Hoek, E., Marinos, P. and Benissi, M., “Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens schist formation”, Bulletin of Engineering Geology and the Environment, Vol. 57(2), pp. 151-160, 1998.
﹝59﹞ Marinos, P and Hoek, E., “GSI: a geologically friendly tool for rock mass strength estimation”, International Conference on Geotechnical & Geological Engineering, pp. 1422-1442, Melbourne, 2000.
﹝60﹞ Hoek, E., Marinos, P. and Marinos V., “Characterization and engineering properties of tectonically undisturbed but lithologically varied edimentary rock masses”, International Journal of Rock Mechanics and Mining Sciences, Vol. 42(2), pp. 277-285, 2005.
﹝61﹞ Marinos, P., Hoek, E. and Marinos V., “Variability of the engineering properties of rock masses quantified by the geological strength index: the case of ophiolites with special emphasis on tunnelling”, Bulletin of Engineering Geology and the Environment, Vol. 65(2), pp. 129-142, 2006.
﹝62﹞ Marinos, P., Marinos V. and Hoek, E., “The geological Strength index: applications and limitations”, Bulletin of Engineering Geology and the Environment, Vol. 64, pp. 55-65, 2005.
﹝63﹞ Sonmez, H. and Ulusa R., “Modifications to the geological strength index (GSI) and their applicability to stability of slopes”, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp. 743-760, 1999.
﹝64﹞ Cai, M, Kaiser, P.K., Uno, H., Tasaka, Y. and Minami, M., “Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system”, International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 3-19, 2004.
﹝65﹞ Tzamos, S. and Sofianos, A.I., “A correlation of four rock mass classification systems through their fabric indices”, International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp. 477-495, 2007.
﹝66﹞ Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Vienna, 1925.
﹝67﹞ Harr, M. E., Groundwater and Seepage, McGraw-Hill, New York, 1962.
﹝68﹞ Lambe, T.W. and Silva-Tulla, F., “Stability analysis of an earth slope”, Stability and Performance of Slopes and Embankments-II, University of California, Berkeley, California, pp. 27-67, 1992.
﹝69﹞ Jibson, R.W., “Use of landslides for paleoseismic analysis”, Engineering Geology, Vol. 43, pp. 291-323, 1996.
﹝70﹞ Longpre, M.A., Del Potro, R., Troll, V.R., Nicoll, G.R., “Engineering geology and future stability of the El Risco landslide, NW-Gran Canaria, Spain”, Bulletin of Engineering Geology and the Environment, Vol. 67, pp. 165-172, 2008.
﹝71﹞ Wechsler, N., Katz, O., Dray, Y., Gonen, I., Marco, S., “Estimating location and size of historical earthquake by combining archaeology and geology in Umm-El-Qanatir, Dead Sea Transform”, Natural Hazards, Vol. 50, pp. 27-43, 2009.
﹝72﹞ El-Ramly, H., Morgenstern, N. R. and Cruden, D. M., “Probabilistic assessment of stability of a cut slope in residual soil”, Geotechnique, Vol. 55(1), pp. 77-84, 2005.
﹝73﹞ Voight, B., Janda, R.J., Glicken, H. and Douglass, P. M., “Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980”, Geotechnique, Vol. 33, pp. 243-273, 1983.
﹝74﹞ 陳榮河,「邊坡穩定之分析方法」,地工技術,第十七期,70-84頁,1987年。
﹝75﹞ ASTM, “Standard practices for preparing rock core as cylindrical test specimens and verifying conformance to Dimensional and shape tolerances”, D4543, 2008.
﹝76﹞ ASTM, “Standard test method for unconfined compressive strength of intact rock core specimens”, D2938, 2005.
﹝77﹞ Bieniawski, Z.T., Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering, Wiley Interscience, New York, 1989.
﹝78﹞ Palmstrom, A., “Measurements of and Correlations between Block Size and Rock Quality Designation (RQD)”, Tunnels and Underground Space Technology, Vol. 20, pp. 362-377, 2005.
﹝79﹞ Palmstrom, A., “RMi – a rock mass characterization system for rock engineering purposes”, University of Oslo, PhD thesis, 1995.
﹝80﹞ 楊哲銘,「非線性破壞準則之臨界楔模型」,國立中央大學,碩士論文,2009年。
﹝81﹞ Palmstrom, A., “Collection and use of geological data in rock engineering”, ISRM News Journal, pp. 21-25, 1997.
﹝82﹞ 劉桓吉、李錦發和紀宗吉,五萬分之一臺灣地質圖說明書(圖幅第38號:雲林),第二版,2004年。
﹝83﹞ 經濟部中央地質調查所:地質資料整合查詢,取自http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm。
﹝84﹞ 經濟部中央地質調查所:坡地岩體工程特性調查研究(瑞竹圖幅),取自http:// envgeo.moeacgs.gov.tw/moeapaper/rock/95203ne.htm#
﹝85﹞ Chen, W.S., Chen, Y.G., and Cheng, H.C., “Paleoseismic study of the Chelungpu fault in the Mingjian area”, Western Pacific Earth Sciences, Vol. 1(3), pp. 351-358, August, 2001.
﹝86﹞ Chen, W.S., Chen, Y.G., Cheng, H.C., Lee, Y.H. and Lee, J.C., “Paleoseismic study of the Chelungpu fault in the Wanfung area”, Western Pacific Earth Sciences, Vol. 1(4), pp. 499-506, November, 2001.
﹝87﹞ Lin, A., Chen, A., Ouchi, T. and Maruyama, T., “Geological evidence of Paleo-seismic events occurred along the Chelungpu fault zone, Taiwan”, TAO, Vol. 14(1), pp. 13-26, 2003.
﹝88﹞ 中興工程顧問股份有限公司,湖山水庫工程計畫 大壩工程細部規劃報告,經濟部水利署中區水資源局,2006年。
﹝89﹞ Lin, P.S., Lee, C.T., Cheng, C.T. and Sung, C.H., “Response spectral attenuation relations for shallow crustal earthquakes in Taiwan”, Engineering Geology, Vol. 121, pp. 150-164, 2011.
﹝90﹞ Pacific Earthquake Engineering Research Center:PEER Ground Motion Database, http://peer.berkeley.edu/peer_ground_motion_database.
﹝91﹞ Wald, D.J., Quitoriano, V., Heaton, T.H. and Kanamori, H. “Relationship between peak ground acceleration, peak ground velocity, and Modified Mercalli Intensity for earthquakes in California”, Earthquake Spectra, Vol. 15(3), pp. 557-564, 1999.
﹝92﹞ Yagoda-Biran, G., Hatzor, Y.H., Amit, R. and Katz, O., “Constraining regional paleo peak ground acceleration from back analysis of prehistoric landslides: Example from Sea of Galilee, Dead Sea transform”, Tectonophysics, Vol. 490, pp. 81-92, 2010.
﹝93﹞ Brune, J.N., “Precariously balanced rocks and ground-motion maps for Southern California”, Bulletin of the Seismological Society of America, Vol. 86, pp. 43-54, 1996.
﹝94﹞ Kamai, R. and Hatzor, Y.H., “Numerical analysis of block stone displacements in ancient masonry structures: a new method to estimate historic ground motions”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, pp. 1321-1340, 2008.
﹝95﹞ Yagoda-Biran, G. and Hatzor, Y.H., “Constraining paleo PGA values by numerical analysis of overturned columns”, Earthquake Engineering and Structural Dynamics, Vol. 39, pp. 463-472, 2010.
﹝96﹞ Szeidovitz, G., Suranyi, G., Gribovszki, K., Bus, Z., Leel-Őssy, S., Varga, Z., “Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in Hungarian caves”, Journal of Seismology, Vol. 12, pp. 21-33, 2008.
指導教授 董家鈞、李錫堤
(Jia-Jyun Dong、Chyi-Tyi Lee)
審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明