博碩士論文 996204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.221.243.112
姓名 蔡雨澄(Yu-Chen Tsai)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 極端降雨下之山崩潛感分析-以莫拉克颱風誘發山崩為例
(Landslide susceptibility analysis under an extreme rainfallevent– a case study form typhoon Morakot in the Gaopingcatchment area)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 莫拉克颱風於民國98年8月間,在高屏溪流域降下了百年來最高的雨量,誘發了大量山崩。為了解極端降雨下之山崩特性及山崩潛感分析可能遭遇的問題,本研究選取莫拉克颱風前後解析度2公尺的福衛二號影像,以人工判釋方法分別圈繪颱風前後之山崩,並做檢核及前後之比對,建立誘發山崩目錄。以此品質較佳之山崩目錄分析山崩分布特性並做為訓練資料,以流域地形、地質及區位為潛感因子,以莫拉克雨量為促崩因子,並以羅吉斯迴歸分析建立新的莫拉克山崩潛感模型。由於此極端降雨誘發了大量的深層滑動型山崩,分析時必須謹慎地將其分辨出來而不納入分析,同時因為山崩多集中於中等坡度(22°~38°),而陡坡及峭壁上的落石型山崩顯然較少,因其崩壞機制與淺層滑動型山崩不同,分析時也須將落石潛勢區分開處理而不納入淺層山崩之潛感分析。
本研究比較了五種不同組合的山崩潛感模型(A1、A2、A3、B、C)解釋莫拉克颱風誘發山崩與預測海棠颱風事件誘發山崩之良窳,期能瞭解在極端降雨之山崩特性下以往山崩潛感模型是否有可改進之處。結果以傳統之模型A1較為適當,其餘模型改善有限。模型A1解釋莫拉克誘發山崩,淺山區AUC達0.830,高山區AUC達0.721;預測海棠誘發山崩,淺山區AUC達0.790,高山區AUC達0.729。此模型除了可解釋極端事件,於驗證海棠的結果也可接受。
摘要(英) The Typhoon Morakot brought extreme rainfall and induced numerous landslides in Gaoping catchment in August, 2009. To realize the feature of landslides and the potential problems involved in the landslide susceptibility analysis under an extreme rainfall event, this study uses landslide inventories interpreted from FORMOSA-2 images before and after the Morakot typhoon event. The landslide inventories were checked by examining rectified aerial photographs, high resolution topographic maps, so as to establish an event-based landslide inventory. This study uses rainfall data of the Typhoon Morakot as trigger factor, and uses topographic factors and geological factors as causative factors, and then uses logistic regression as analytical method to establish a susceptibility model. Because this extreme rainfall event induces a large number of deep slides, to identify them carefully and to exclude them from the landslide inventory are necessary. The event-based landslide inventory shows that most landslides locate at moderate slopes(22°~38°) instead of scarp slope. Because the differences of mechanism between shallow landslides and rockfalls, we exclude rockfall region from the shallow landslide susceptibility analysis.
To clarify the issue of landslide susceptibility analysis under an extreme rainfall event, this study compares five different models (model A1, model A2, model A3, model B, and model C). The results show that modle A1 established with traditional method is still suitable, the other models have not shown any advantages. Model A1 shows that AUCs of the success rate curves for hill terrain and for mountainous terrain are 0.830 and 0.721, respectively. It also shows that AUCs of the validation rate curves for hill terrain and for mountainous terrain are 0.790 and 0.729, respectively in the Haitang event. The results are all satisfactory.
關鍵字(中) ★ 莫拉克
★ 山崩目錄
★ 羅吉斯回歸
★ 極端降雨
關鍵字(英) ★ Logistic Regression
★ Morakot
★ extreme rainfall
★ landslide inventory
論文目次 中文摘要…………………………………………………………………I
英文摘要…………………………………………………………….….III
致 謝………………………………………………………………...V
目 錄……………………………………………………………….VII
圖 目………………………………………………………………..IX
表 目…………………………………………………………….….XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究流程 5
第二章 研究方法 7
2.1 羅吉斯迴歸 7
2.2 驗證方法 13
第三章 研究資料 17
3.1研究區域概述 17
3.2資料蒐集與整理 23
3.3山崩目錄建立 25
3.4雨量因子處理 33
3.5山崩因子處理 37
3.6 落石潛勢區 48
3.7因子篩選 50
第四章 山崩潛感分析 65
4.1 分析樣本選取 65
4.2 羅吉斯迴歸分析結果 67
第五章 討論 107
5.1 莫拉克模型比較 107
第六章 結論與建議 111
6.1 結論 111
6.2 建議 112
參考文獻 113
附錄一 本研究所使用之衛星影像
參考文獻 內政部營建署,石門水庫集水區土地利用整體規劃報告,131頁,2005。
王淑慧,類神經網路應用於道路邊坡落石坍方預測之可行性研究-以阿里山公路為例,國立台北科技大學材料及資源工程研究所碩士論文,151頁,2000。
王鑫,地景法邊坡穩定性的分析研究,工程環境會刊,第2期,73-91,1981。
台灣省政府水利處,台灣省水利統計年報,1998
朱聖心,應用地理資訊系統製作地震及降雨所引致之山崩危險圖,國立臺灣大學土木工程研究所碩士論文,169頁,2001。
何春蓀,台灣地質概論-台灣地質圖說明書,第二版,經濟部中央地質調查所出版,163頁,1986。
吳振威,公路邊坡保護工法之選擇模式研究-以南二高白河以南路段為例,國立成功大學資源工程研究所碩士論文,144頁,2003。
吳漢雄,鄧聚龍,溫坤禮,灰色分析入門,高立圖書有限公司,1-206,1996。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(1/3),經濟部中央地質調查所報告,第92-11號,154頁,2003。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(2/3),經濟部中央地質調查所報告,第93-17號,264頁,2004。
李錫堤,潘國樑,林銘郎,山崩調查與危險度評估-山崩潛感分析之研究(3/3),經濟部中央地質調查所報告,第94-18號,268頁,2005。
李錫堤,費立沅,李錦發,林銘郎,董家鈞,張瓊文,石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文光碟,1-10,2008。
李錫堤,費立沅,山崩災害分析與廣域製圖,地工技術,第129期,67-76,2011。
李馨慈,應用累積位移法於地震引起之山崩潛勢分析,國立成功大學資源工程學系碩士論文,103頁,2004。
林中興,山坡穩定性評估之因子分析及地理資訊系統之應用,國立中央大學應用地質研究所碩士論文,87,1994。
林昭遠、吳瑞鵬、林文賜,921震災塌地植生復育監測與評估,中華水土保持學報,32-1,59-66,2001。
林彥享,以類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,81頁,2003。
林彥享,以類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,81頁,2003。
林淑媛,地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,141頁,2003。
林書毅,區域性山坡穩定評估方法探討-以林口台地為例,國立中央大學應用地質研究所碩士論文,92頁,1999。
邱紹維,灰關聯分析於水庫水質縱合評判之研究-以翡翠與石門水庫為例,國立中央大學應用地質研究所碩士論文,136頁,2003。
許琦,模糊集理論在山崩潛感性分析之應用,成功大學土木工程研究所,第三屆大地工程學術研究討論會宣讀論文,23-33,1989。
陳志豪,變質岩公路邊坡之破壞潛勢分析-以南橫公路埡口至新武段為例,國立成功大學資源工程研究所碩士論文,124頁,2002。
陳振華,潘國樑,台北市山坡地住宅區環境地質調查研究,工研院能源與礦業研究所報告,第229號,385頁,1985。
陳崇華,台十一線海岸公路邊坡崩塌災害分析,國立東華大學自然資源管理研究所碩士論文,90頁,2003。
陳嬑璇,溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程研究所碩士論文,141頁,2002。
張石角,都市山坡地利用潛力調查與製圖-方法論與實例,中華水土保持學報,第11卷,第1期,13-24,1980。
張弼超,運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,134頁,2005。
張舜孔,類神經網路應用在阿里山公路邊坡破壞因子之分析研究,國立成功大學土木工程研究所碩士論文,92頁,2003。
莊緯璉 ,運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,178頁,2005。
黃志暉,臺東地區主要競爭醫院忠誠病人之區辨研究,高雄醫學大學公共衛生學研究所碩士在職專班碩士論文,153頁,2004。
黃俊英,多變量分析,第五版,台北,中國經濟企業研究所,1995。
黃春銘,使用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,125頁,2005。
葉怡成,類神經網路模式應用與實作,儒林出版社,2003。
楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂,模糊控制理論與技術,全華科技圖書股份有限公司,2002。
楊智堯,類神經網路於邊坡破壞潛能分析之應用研究,國立成功大學土木工程研究所碩士論文,110頁,1999。
經濟部中央地質調查所,臺灣坡地社區工程地質調查與探勘報告-總論,經濟部中央地質調查所,第1卷,第1集,73頁,1980。
經濟部中央地質調查所,地質敏感區災害潛勢評估與監測-都會區周緣坡地山崩潛勢評估(1/4),第5-1 – 5-7頁,2007。
經濟部中央地質調查所,易淹水地區上游集水區地質調查與資料庫建置-集水區水文地質對坡地穩定性影響之調查評估計畫,第1 期,609頁,2007 。
經濟部中央地質調查所,集水區地質調查及山崩土石流調查與發生潛
勢評估計畫(2/3),共594頁,2009。
廖啟雯,機率式地震誘發山崩危害度分析–以國姓地區為例,國立中央大學地球物理研究所博士論文,120頁,2004。
鄭元振,地理資訊系統在區域邊坡穩定分析之應用-中橫公路天祥至太魯閣段,國立成功大學礦冶及材料科學研究所碩士論文,87頁,1992。
鄭傑銘,應用 GIS 進行豪雨及地震引致山崩之潛感性分析,國立台灣大學土木工程研究所碩士論文,136頁,2003。
簡李濱,應用地理資訊系統建立坡地安定評估之計量方法,國立中興大學土木工程研究所碩士論文,114頁,1992。20蘇苗彬,集水區坡地安定評估之計量分析方法,中華水土保持學報,第29卷,第2期,105-114,1998。
魏鎮東,南橫公路邊坡落石坍方可能性之探討,國立台北科技大學材料及資源工程系碩士班碩士論文,167頁,2001。
藍世欽,工程地質因子對道路邊坡穩定性之影響-以南橫公路甲仙至梅山段,國立成功大學資源工程研究所碩士論文,128頁,2000。
鐘意晴,區域性山崩潛感分析方法探討-以石門水庫集水區為例,國立中央大學地球物理研究所碩士論文,138頁,2009。
Agresti, A., Categorical data analysis (2nd ed.), New York: John Wiley, 710pp. 2002.
Atkinson, P. M., Massari, R., Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Computers & Geosciences, 24, 373-385., 1998.
Au, S. W.C., Rainfall and slope failure in Hong Kong, Engineering Geology, 36, 141-147., 1993.
Ayalew, L., Yamagishi, H., The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15-31., 2005.
Borga, M., Fontana, G. D., Ros, D. D., Marchi, L., Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology, 35(2-3), 81-88., 1998.
Brabb, E. E., Pampeyan, E. H., Bonilla, M.G., Landslide susceptibility in San Mateo County, California, U.S. Geol. Surv., Misc. Field Studies Map, MF-360., 1972.
Brabb, E. E., Innovative approaches to landslide hazard and risk mapping, in Proc., Fourth International Symposium on Landslides, Canadian Geotechnical Society, Toronto, Canada, 1, 307-324., 1984.
Brenning, A., Spatial prediction models for landslide hazards: review, comparison and evaluation, Natural Hazards and Earth System Science, 5(6), 853-862., 2005.
Burton, A., Bathurst, J. C., Physically based modeling of shallow landslide sediment yield at a catchment scale: Environmental Geology, 35, 89-99., 1998.
Caine, N., Rainfall intensity-duration control of shallow landslides and debris flows, Geograf, Ann, 62A, 23-27., 1980.
Cannon, S. H., Ellen, S. D., Rainfall conditions for abundant debris avalanches San Francisco Bay region, California, California Geology, 38(12), 267-272., 1985.
Cannon, S.H., Gartner, J.E., Parrett, C., Parise, M., Wildfire-related 76 debris flow generation through episodic progressive sediment bulking processes, western U.S.A., in Ricjenmann, D. and Chen, C.L., eds., Debris-flow hazards mitigation - Mechanics, prediction, and assessment: Proceedings of the Third International Conference on Debris-Flow Hazards Mitigation, 71-82., 2003.
Cannon, S.H., Gartner, J.E., Rupert, M.G., Michael, J.A., Emergency assessment of debris flow hazard from basins burned by the Cedar and Paradise fires of 2003, southern California: U.S. Geological Survey Open File Report 2004-1011., 2004.
Carrara, A., and Merenda, L., Methodology for an inventory of slope instability events in Calabria (Southern Italy), Geologia Applicata e Idrogeologica, 9, 237-255., 1974.
Carrara, A., Multivariate models for landslide hazard evaluation, Mathmatical Geology, 15(3), 403-427., 1983.
Carrara, A., Landslide hazard mapping by statistical methods: A “black box”approach. In Workshop on Natural Disasters in European Mediterranean Countries, Perugia, Italy, Consiglio Nazionale delle Ricerche, Perugia, 205-224., 1988.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., Geographical information systems and multivariate models in landslide hazard evaluation. in ALPS 90 Alpine Landslide Practial Seminar, Sixth International Conference and Field Workshop on Landslides, Aug. 31-Sept.12, Milan, Italy, Universita degli Studi de Milano, 17-28., 1990.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P., GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16(5), 427-445., 1991.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Uncertainty in assessing landslide hazard and risk, ITC Journal, 2, 172-183., 1992.
Chang, K. T., Chiang, S. H., Hsu, M. L., Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, 335-347., 2007a.
Chang, K. T., Chiang, S. H., Lei, F., Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 1002, 11pp., 2007b.
Chung, C. F., Fabbri, A. G., Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering & Remote Seneing, 65(12), 1389-1399., 1999.
Chung, C. F., Fabbri, A. G., Validation of spatial prediction models for landslide hazard mapping, Natural Hazards 30, 451-472., 2003.
Corominas, J., Moya, J., Lloret, A., Gili, J. A., Angeli, M. G., Pasuto, A., Silvano, S., Measurement of landslide displacements using a wireextensometer, Engineering Geology, 55, 149-166., 2001.
Dai, F. C. Lee, C. F. Li, J. Xu, Z. W., Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, 40, 381-391., 2001.
Dai, F. C., Lee, C. F., Frequency-volume relation and prediction of rainfall-induced landslides, Engineering Geology, 59, 253-266., 2001.
Dai, F. C. Lee, C. F., Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228., 2002.
Dai, F. C. Lee, C. F., A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression, Earth Surface Processes and Landforms, 28, 527-545., 2003.
Dai, F. C. Lee, C. F. Tham, L. G. Ng, K.C. Shum, W. L. Logistic regression modelling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong, Bulletin of Engineering Geology and the Environment, 63, 315-327., 2004.
Dietrich, W. E., Reiss R., Hsu M. L., Montgomery D. R., A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Processes, 9, 383-400., 1995.
Ercanoglu, M., Gokceoglu, C., Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environmental Geology, 41, 720-730., 2002.
Ercanoglu, M., Gokceoglu, C., Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, 75, 229-250., 2004.
Feinberg, S., The analysis of cross-classified categorical data (2nd ed.), Cambridge, MA: MIT Press, 198pp., 1985.
Gao, J., Lo, C. P., GIS modeling of influence of topography and morphology on landslide occurrence in Nelson County, Virginia: GIS/LIS 91 Proceedings, 1, 954-963., 1991.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., Landslide hazard evaluation: a review of current techniques and their application in a multi-Scale study, central Italy, Geomorphology, 31, 181-216., 1999.
Govi, M., Mortara, G., Sorzara, P.F., Eventi idrologici e frane, Geological Apply Idrogeology, XX (II), 359-375., 1985.
Hansen, A., Landslide hazard analysis, in Slope Instability (Brunsden, D. and Prior, D.B. eds.), John Wiley and Sons, New York, 523-602., 1984.
Harp, E.L., Jibson, R. W., Inventory of landslides triggered by the 1994 Northridge, California earthquake. In:US Geological Survey Open-File Report 17, 95-213., 1995.
Harp, E. L., Jibson, R. W., Landslides triggered by the 1994 Northridge, California earthquake, Bulletin of the Seismological Society America, 86, 1B, S319-S332., 1996.
Hearn, G. J. Landslide and erosion hazard mapping at Ok Tedi Cooper Mine, The Quarterly Journal of Engineering Geology, 28, 47-60., 1995.
Huang, C. M., Chung, Y. C., Lee, C. T., Landslide susceptibility assessment of the Tahang river catchment in northern Taiwan, American Geophysical Union (AGU), NG23A-1118. 2008.
Ives, J. D., Bovis, M. J., Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A, Arctic and Alpine Research, 10(2), 185-212. 1978.
Ives, J. D., Messerli, B. Mountain hazards mapping in Nepal: introduction to an applied mountain research project, Mountain Research and Development, 1(3-4), 223-230. 1981.
Jibson, R. W. Keefer, D. K., Statistical analysis of factors affecting landslide distribution in the New Madrid seismic zone, Tennessee and Kentucky, Engineering Geology, 27, 509-542., 1989.
Jibson, R. W., Harp, E. L., Michael, J. A., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California Area, USGS Open-File Rep, 98-113., 1998.
Jibson, R. W., Harp, E. L., Michael, J. A., A method for producing digital probabilistic seismic landslide hazard maps, Engineering Geology, 58, 271-289., 2000.
Johnson, K. A., Sitar, N., Hydrologic conditions leading to debris- flows initiation, Canadian Geotechnical Journal, 27, 789-801., 1990.
Jones, F. O., Embody, D. R., Peterson, W. C. Landslides along the Columbia River valley, northeastern Washington, Professional Paper 367, U.S. Geological Survey, Reston, Va, 98pp., 1961.
Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P., A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas, Engineering Geology, 85, 347-366., 2006.
Keefer, D. K., Statistical analysis of an earthquake-induced landslide distribution - the 1989 Loma Prieta, California event, Engineering Geology, 58, 231-249., 2000.
Kienholz, H., Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000, Arctic and Alpine Research, 10, 169-184., 1978.
Kobashi, S., Suzuki, M. Hazard index for the judgement of slope stability in the Rokko mountain region, In Proc., Interpraevent 1988, Graz, Austria, 1, 223-233., 1988.
Kobashi, S., Suzuki, M., Hazard index for the judgement of slope stability in the Rokko mountain region, In Proc, 1, 223-233. 1988
Koukis, G., Ziourkas, C., Slope instability phenomena in Greece: A statistical analysis, Bulletin of the International Association of Engineering Geology, 43, 47-60., 1991.
Lambe, T. W., Whitman, R. V., Soil Mechanics, Wiley, New York, 553pp., 1979.
Larsen, M.C., Simon, A., A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico, Geografiska Annaler, 75A, 1-2, 13-23., 1993.
Lee, S., Min, K., Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology, 40, 1095-1113., 2001.
Lee, C. T., GIS Application in Landslide Hazard Analysis, Pacific Neighborhood Consortium (PNC) 2008 Annual Meeting program., 2008.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., Statistical approach to earthquake-induced landslide susceptibility, Engineering Geology, 100(1-2), 43-58., 2008a.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960., 2008b.
Lee, C. T., Huang, C. M., Neuro-fuzzy-based landslide susceptibility analysis - an example from Central Western Taiwan, Geophysical Research Abstracts, 9, 06849., 2007.
Lillesand, T. M., Kiefer, R. W., Remote sensing and image interpretation, Wiley & Sons, New York, 724pp. 2000.
Long, J. S., Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297pp. 1997.
Lumb, P., Slope failure in Hong Kong, Quarterly Journal of Engineering Geology, 8, 31–65., 1975.
Malgot, J., Mahr, T., Engineering geological mapping of the west Carpathian landslide areas, Bulletin of the International Association of Engineering Geology, 19, 113-121., 1979.
Mark R. K., Ellen S. D., Statistical and simulation models for mapping debris-flow hazard, Geographical Information Systems in Assessing Natural Hazards, 93-106., 1995.
Meneroud, J. P., Calvino, A., Carte ZERMOS, zones exposees a des Risques lies aux Mouvements du Sol et du Sous-Sol a 1:25,000, Region de la Moyenne Vesubie (Alpes-Maritimes), Bureau de Recherches Geologiqueset et Minieres, Orleans, France, 11pp., 1976.
Miles, S. B., Keefer, D. K., Comprehensive areal model of earthquake-induced landslides: technical specification and user guide. U.S. Geological Survey Open-File Report 2007-1072, 69pp., 2007.
Neuland, H., A prediction model of landslips, Catena, 3, 215-230., 1976.
Newmark, N. M., Effects of earthquakes on dams and embankments, Geotechnique, 15, 139-160., 1965.
Ohlmacher, G. C., Davis, J. C., Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69, 331-343., 2003.
Pearce, A. J., O’loughlin, C. L., Landsliding during a M7.7 earthquake:influence of geology and topography:Geology, 13, 855-858., 1985.
Premchitt, J., Brand, E. W., Chen, P. Y. M., Rain-induced landslidesin Hong Kong, Asia Engineer, Journal of the Hong Kong Institution of Engineers June, 43-51., 1994.
Polemic, M., Sdao, F., The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy), Engineering Geology, 53, 297-309., 1999.
Rupke, J., Cammeraat, E., Seijmonsbergen, A. C., van Westen, C. J., Engineering geomorphology of the Widentobel catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, 26, 33-68., 1988.
Salciarini, D., Godt, J.W., Savage, W. Z., Conversini, P., Baum, R. L., Michael, J. A., Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3, 181-194., 2006.
Sidle, R. C., Pearce, A. J., O’’Loughlin, C. L., Hillslope stability and land use, Water Resources Monograph, 11, 140pp., 1985.
Stevenson, P.C., An empirical method for the evaluation of relative landslide risk, Bulletin of the international association of engineering geology, 16, 69-72., 1977.
Suzen, M. L., Doyuran, V., A comparison of the GIS based landslide susceptibility assesment methods: multivariate versus bivariate, Environmental Geology, 45, 665-679., 2004a.
Suzen, M. L., Doyuran, V., Data driven bivariate landslide susceptibility assessment using geographical information system, Engineering Geology, 71, 303-321., 2004b.
Swets, J. A., Measuring the accuracy of diagnostic systems, Science, 240(4857), 1285-1293., 1988.
Uromeihy, A., Mahdavifar, M.R., Landslide hazard zonation of the Khorshrostam area, Iran, Bulletin of Engineering Geology and Environment, 58, 207-213., 2000.
van Westen, C.J., Medium scale landslide hazard analysis using a PC based GIS: A case study from Chinchina, Colombia. In Proc., ler Simposio Internacional sobre Sensores Remotes Sistemas de Informacion Geografica (SIG) para el Estudio de Riesgos Naturales, Bogota, Colombia(J.B. Alzate, ed.), Instituto Geografico Agustin Codazzi, Bogota, 2, 20pp., 1992.
van Westen, C. J., van Asch, T. W. J., Soeters, R., Landslide hazard and risk zonation–why is it still so difficult, Bulletin of Engineering Geology and Environment, 65, 167-184., 2006.
Varnes, D. J., Landslide hazard zonation: a review of principles and practice, UNESCO Press, Praris, 63pp., 1984.
Wilson, J. P., Gallant, J. C., Terrain analysis, John Wiley & Sons, Inc., 51-58., 2000.
Wieczorek, G. F., Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. In Debris Flows/ Avalanches: Process, Recognition, and Mitigation, Costa JE, Wieczorek GF (eds), Reviews in Engineering Geology, Geological Society of America, 93-104., 1987.
Yin K. L., Yan, T. Z. Statistical prediction models for slope instability of metamorphosed rocks, Proceedings of the International Symposium on Landslides, 5, 1269-1272., 1988.
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2012-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明