參考文獻 |
[1] G.J. Hausman, Anatomical and enzyme histochemical differentiation of adipose tissue, International journal of obesity 9 Suppl 1 (1985) 1-6.
[2] M.E. Vazquez-Vela, N. Torres, A.R. Tovar, White adipose tissue as endocrine organ and its role in obesity, Archives of medical research 39 (2008) 715-728.
[3] C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, H.R. Patel, R.S. Ahima, M.A. Lazar, The hormone resistin links obesity to diabetes, Nature 409 (2001) 307-312.
[4] C.M. Steppan, E.J. Brown, C.M. Wright, S. Bhat, R.R. Banerjee, C.Y. Dai, G.H. Enders, D.G. Silberg, X. Wen, G.D. Wu, M.A. Lazar, A family of tissue-specific resistin-like molecules, Proceedings of the National Academy of Sciences of the United States of America 98 (2001) 502-506.
[5] L. Patel, A.C. Buckels, I.J. Kinghorn, P.R. Murdock, J.D. Holbrook, C. Plumpton, C.H. Macphee, S.A. Smith, Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators, Biochemical and biophysical research communications 300 (2003) 472-476.
[6] K.H. Kim, K. Lee, Y.S. Moon, H.S. Sul, A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation, The Journal of biological chemistry 276 (2001) 11252-11256.
[7] I.N. Holcomb, R.C. Kabakoff, B. Chan, T.W. Baker, A. Gurney, W. Henzel, C. Nelson, H.B. Lowman, B.D. Wright, N.J. Skelton, G.D. Frantz, D.B. Tumas, F.V. Peale, Jr., D.L. Shelton, C.C. Hebert, FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family, The EMBO journal 19 (2000) 4046-4055.
[8] R.R. Banerjee, M.A. Lazar, Dimerization of resistin and resistin-like molecules is determined by a single cysteine, The Journal of biological chemistry 276 (2001) 25970-25973.
[9] D.B. Savage, C.P. Sewter, E.S. Klenk, D.G. Segal, A. Vidal-Puig, R.V. Considine, S. O’’Rahilly, Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans, Diabetes 50 (2001) 2199-2202.
[10] K.M. Utzschneider, D.B. Carr, J. Tong, T.M. Wallace, R.L. Hull, S. Zraika, Q. Xiao, J.S. Mistry, B.M. Retzlaff, R.H. Knopp, S.E. Kahn, Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans, Diabetologia 48 (2005) 2330-2333.
[11] F. Haugen, A. Jorgensen, C.A. Drevon, P. Trayhurn, Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes, FEBS letters 507 (2001) 105-108.
[12] N. Shojima, H. Sakoda, T. Ogihara, M. Fujishiro, H. Katagiri, M. Anai, Y. Onishi, H. Ono, K. Inukai, M. Abe, Y. Fukushima, M. Kikuchi, Y. Oka, T. Asano, Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells, Diabetes 51 (2002) 1737-1744.
[13] J. Kawashima, K. Tsuruzoe, H. Motoshima, A. Shirakami, K. Sakai, Y. Hirashima, T. Toyonaga, E. Araki, Insulin down-regulates resistin mRNA through the synthesis of protein(s) that could accelerate the degradation of resistin mRNA in 3T3-L1 adipocytes, Diabetologia 46 (2003) 231-240.
[14] Q. Zhong, C.Y. Lin, K.J. Clarke, R.J. Kemppainen, D.D. Schwartz, R.L. Judd, Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes, Biochemical and biophysical research communications 296 (2002) 383-387.
[15] K. Choi, Y.B. Kim, Molecular mechanism of insulin resistance in obesity and type 2 diabetes, The Korean journal of internal medicine 25 (2010) 119-129.
[16] C.L. Carpenter, B.C. Duckworth, K.R. Auger, B. Cohen, B.S. Schaffhausen, L.C. Cantley, Purification and characterization of phosphoinositide 3-kinase from rat liver, The Journal of biological chemistry 265 (1990) 19704-19711.
[17] H. Song, N. Shojima, H. Sakoda, T. Ogihara, M. Fujishiro, H. Katagiri, M. Anai, Y. Onishi, H. Ono, K. Inukai, Y. Fukushima, M. Kikuchi, H. Shimano, N. Yamada, Y. Oka, T. Asano, Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules, Biochemical and biophysical research communications 299 (2002) 291-298.
[18] Y.H. Chen, M.J. Lee, H.H. Chang, P.F. Hung, Y.H. Kao, 17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways, Endocrinology 147 (2006) 4496-4504.
[19] G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science 259 (1993) 87-91.
[20] M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, R. Paschke, Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes, Biochemical and biophysical research communications 288 (2001) 1027-1031.
[21] S.E. Mills, C.Y. Liu, Sensitivity of lipolysis and lipogenesis to dibutyryl-cAMP and beta-adrenergic agonists in swine adipocytes in vitro, Journal of animal science 68 (1990) 1017-1023.
[22] T. Kitamura, Y. Kitamura, S. Kuroda, Y. Hino, M. Ando, K. Kotani, H. Konishi, H. Matsuzaki, U. Kikkawa, W. Ogawa, M. Kasuga, Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt, Molecular and cellular biology 19 (1999) 6286-6296.
[23] T. Szkudelski, E. Nowicka, K. Szkudelska, Leptin secretion and protein kinase A activity, Physiological research / Academia Scientiarum Bohemoslovaca 54 (2005) 79-85.
[24] L. Cong, K. Chen, J. Li, P. Gao, Q. Li, S. Mi, X. Wu, A.Z. Zhao, Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes, The Biochemical journal 403 (2007) 519-525.
[25] K. Tasken, E.M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiological reviews 84 (2004) 137-167.
[26] J.W. Zhang, D.J. Klemm, C. Vinson, M.D. Lane, Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis, The Journal of biological chemistry 279 (2004) 4471-4478.
[27] J. de Rooij, F.J. Zwartkruis, M.H. Verheijen, R.H. Cool, S.M. Nijman, A. Wittinghofer, J.L. Bos, Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature 396 (1998) 474-477.
[28] T. Shibasaki, H. Takahashi, T. Miki, Y. Sunaga, K. Matsumura, M. Yamanaka, C. Zhang, A. Tamamoto, T. Satoh, J. Miyazaki, S. Seino, Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP, Proceedings of the National Academy of Sciences of the United States of America 104 (2007) 19333-19338.
[29] R.K. Petersen, L. Madsen, L.M. Pedersen, P. Hallenborg, H. Hagland, K. Viste, S.O. Doskeland, K. Kristiansen, Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes, Molecular and cellular biology 28 (2008) 3804-3816.
[30] S.P. Kim, J.M. Ha, S.J. Yun, E.K. Kim, S.W. Chung, K.W. Hong, C.D. Kim, S.S. Bae, Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase A and Akt during adipocyte differentiation, Biochemical and biophysical research communications 399 (2010) 55-59.
[31] S.T. Wong, K. Trinh, B. Hacker, G.C. Chan, G. Lowe, A. Gaggar, Z. Xia, G.H. Gold, D.R. Storm, Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice, Neuron 27 (2000) 487-497.
[32] T. Kurahashi, K.W. Yau, Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells, Nature 363 (1993) 71-74.
[33] A.T. Bender, J.A. Beavo, Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use, Pharmacological reviews 58 (2006) 488-520.
[34] C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents, Pharmacology & therapeutics 109 (2006) 366-398.
[35] S.H. Francis, M.A. Blount, J.D. Corbin, Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions, Physiological reviews 91 (2011) 651-690.
[36] W. Richter, M. Conti, The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases, The Journal of biological chemistry 279 (2004) 30338-30348.
[37] W. Richter, M. Conti, Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs), The Journal of biological chemistry 277 (2002) 40212-40221.
[38] M.D. Houslay, Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown, Trends in biochemical sciences 35 (2010) 91-100.
[39] D.H. Maurice, R.J. Haslam, Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP, Molecular pharmacology 37 (1990) 671-681.
[40] Y. Shakur, K. Takeda, Y. Kenan, Z.X. Yu, G. Rena, D. Brandt, M.D. Houslay, E. Degerman, V.J. Ferrans, V.C. Manganiello, Membrane localization of cyclic nucleotide phosphodiesterase 3 (PDE3). Two N-terminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum, The Journal of biological chemistry 275 (2000) 38749-38761.
[41] R. He, N. Komas, D. Ekholm, T. Murata, M. Taira, S. Hockman, E. Degerman, V.C. Manganiello, Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3), Cell biochemistry and biophysics 29 (1998) 89-111.
[42] E. Degerman, P. Belfrage, V.C. Manganiello, Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3), The Journal of biological chemistry 272 (1997) 6823-6826.
[43] X. Zhang, G.B. Carey, Plasma membrane-bound cyclic AMP phosphodiesterase activity in 3T3-L1 adipocytes, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 137 (2004) 309-316.
[44] Y.H. Choi, S. Park, S. Hockman, E. Zmuda-Trzebiatowska, F. Svennelid, M. Haluzik, O. Gavrilova, F. Ahmad, L. Pepin, M. Napolitano, M. Taira, F. Sundler, L. Stenson Holst, E. Degerman, V.C. Manganiello, Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice, The Journal of clinical investigation 116 (2006) 3240-3251.
[45] A. Oknianska, E. Zmuda-Trzebiatowska, V. Manganiello, E. Degerman, Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocytes, Biochemical and biophysical research communications 353 (2007) 1080-1085.
[46] M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, R. Paschke, Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes, FEBS letters 500 (2001) 60-63.
[47] V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes, Biochimie 93 (2011) 1631-1640.
[48] J.R. Arch, The beta 3-adrenergic system and beta 3-adrenergic agonists, Reviews in endocrine & metabolic disorders 2 (2001) 385-393.
[49] H. Liu, D.H. Maurice, Expression of cyclic GMP-inhibited phosphodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP, British journal of pharmacology 125 (1998) 1501-1510.
[50] E. Degerman, C.J. Smith, H. Tornqvist, V. Vasta, P. Belfrage, V.C. Manganiello, Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation, Proceedings of the National Academy of Sciences of the United States of America 87 (1990) 533-537.
[51] T. Rahn Landstrom, J. Mei, M. Karlsson, V. Manganiello, E. Degerman, Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP, The Biochemical journal 346 Pt 2 (2000) 337-343.
[52] D.G. Hardie, Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease, FEBS letters 582 (2008) 81-89.
[53] D. Carling, The AMP-activated protein kinase cascade--a unifying system for energy control, Trends in biochemical sciences 29 (2004) 18-24.
[54] B. Viollet, F. Andreelli, AMP-activated protein kinase and metabolic control, Handbook of experimental pharmacology (2011) 303-330.
[55] B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology, Trends in endocrinology and metabolism: TEM 17 (2006) 205-215.
[56] A.S. Lihn, N. Jessen, S.B. Pedersen, S. Lund, B. Richelsen, AICAR stimulates adiponectin and inhibits cytokines in adipose tissue, Biochemical and biophysical research communications 316 (2004) 853-858.
[57] H. Sell, D. Dietze-Schroeder, K. Eckardt, J. Eckel, Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone, Biochemical and biophysical research communications 343 (2006) 700-706.
[58] C.M. Steppan, M.A. Lazar, Resistin and obesity-associated insulin resistance, Trends in endocrinology and metabolism: TEM 13 (2002) 18-23.
[59] I. Gabriely, X.H. Ma, X.M. Yang, G. Atzmon, M.W. Rajala, A.H. Berg, P. Scherer, L. Rossetti, N. Barzilai, Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process?, Diabetes 51 (2002) 2951-2958.
[60] H. Green, M. Meuth, An established pre-adipose cell line and its differentiation in culture, Cell 3 (1974) 127-133.
[61] H. Green, O. Kehinde, An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion, Cell 5 (1975) 19-27.
[62] F.M. Gregoire, C.M. Smas, H.S. Sul, Understanding adipocyte differentiation, Physiological reviews 78 (1998) 783-809.
[63] M. Reichert, D. Eick, Analysis of cell cycle arrest in adipocyte differentiation, Oncogene 18 (1999) 459-466.
[64] R.C. Honnor, G.S. Dhillon, C. Londos, cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior, The Journal of biological chemistry 260 (1985) 15122-15129.
[65] M. Rodbell, Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis, The Journal of biological chemistry 239 (1964) 375-380.
[66] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, The Journal of biological chemistry 193 (1951) 265-275.
[67] S.L. Jin, M. Conti, Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses, Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 7628-7633.
[68] S.L. Jin, L. Lan, M. Zoudilova, M. Conti, Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages, Journal of immunology 175 (2005) 1523-1531.
[69] R. Yanai, N. Yamada, M. Inui, T. Nishida, Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells, Experimental eye research 83 (2006) 76-83.
[70] J.W. Scott, S.A. Hawley, K.A. Green, M. Anis, G. Stewart, G.A. Scullion, D.G. Norman, D.G. Hardie, CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, The Journal of clinical investigation 113 (2004) 274-284.
[71] M.S. Gauthier, H. Miyoshi, S.C. Souza, J.M. Cacicedo, A.K. Saha, A.S. Greenberg, N.B. Ruderman, AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance, The Journal of biological chemistry 283 (2008) 16514-16524.
[72] W. Yin, J. Mu, M.J. Birnbaum, Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes, The Journal of biological chemistry 278 (2003) 43074-43080.
[73] C.M. Steppan, J. Wang, E.L. Whiteman, M.J. Birnbaum, M.A. Lazar, Activation of SOCS-3 by resistin, Molecular and cellular biology 25 (2005) 1569-1575.
[74] S.P. Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, The Biochemical journal 351 (2000) 95-105.
[75] S.Y. Park, J.H. Lee, K.Y. Kim, E.K. Kim, S.J. Yun, C.D. Kim, W.S. Lee, K.W. Hong, Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-gamma transcription, Atherosclerosis 201 (2008) 258-265.
[76] S.Y. Park, H.K. Shin, J.H. Lee, C.D. Kim, W.S. Lee, B.Y. Rhim, K.W. Hong, Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription, The Journal of pharmacology and experimental therapeutics 329 (2009) 571-579.
[77] P. Engfeldt, P. Arner, J. Ostman, Nature of the inhibitory effect of collagenase on phosphodiesterase activity, Journal of lipid research 26 (1985) 977-981.
[78] P. Engfeldt, P. Arner, J. Ostman, Influence of adipocyte isolation by collagenase on phosphodiesterase activity and lipolysis in man, Journal of lipid research 21 (1980) 443-448.
[79] J.S. Hayes, L.L. Brunton, S.E. Mayer, Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1, The Journal of biological chemistry 255 (1980) 5113-5119.
[80] G. McConnachie, L.K. Langeberg, J.D. Scott, AKAP signaling complexes: getting to the heart of the matter, Trends in molecular medicine 12 (2006) 317-323.
[81] K.L. Dodge, S. Khouangsathiene, M.S. Kapiloff, R. Mouton, E.V. Hill, M.D. Houslay, L.K. Langeberg, J.D. Scott, mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module, The EMBO journal 20 (2001) 1921-1930.
[82] C. Kurlawalla-Martinez, B. Stiles, Y. Wang, S.U. Devaskar, B.B. Kahn, H. Wu, Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue, Molecular and cellular biology 25 (2005) 2498-2510.
[83] R. Rea, R. Donnelly, Effects of metformin and oleic acid on adipocyte expression of resistin, Diabetes, obesity & metabolism 8 (2006) 105-109.
[84] K.N. Phoenix, F. Vumbaca, M.M. Fox, R. Evans, K.P. Claffey, Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy, Breast cancer research and treatment 123 (2010) 333-344.
[85] G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMP-activated protein kinase in mechanism of metformin action, The Journal of clinical investigation 108 (2001) 1167-1174.
[86] T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase, Nature medicine 8 (2002) 1288-1295.
[87] H. Satoh, M.T. Nguyen, P.D. Miles, T. Imamura, I. Usui, J.M. Olefsky, Adenovirus-mediated chronic "hyper-resistinemia" leads to in vivo insulin resistance in normal rats, The Journal of clinical investigation 114 (2004) 224-231.
[88] J. Bain, L. Plater, M. Elliott, N. Shpiro, C.J. Hastie, H. McLauchlan, I. Klevernic, J.S. Arthur, D.R. Alessi, P. Cohen, The selectivity of protein kinase inhibitors: a further update, The Biochemical journal 408 (2007) 297-315.
[89] B. Omar, E. Zmuda-Trzebiatowska, V. Manganiello, O. Goransson, E. Degerman, Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis, Cellular signalling 21 (2009) 760-766.
[90] R.F. Morrison, S.R. Farmer, Hormonal signaling and transcriptional control of adipocyte differentiation, The Journal of nutrition 130 (2000) 3116S-3121S.
|