博碩士論文 982210003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.223.158.132
姓名 林宗毅(Chung-yi Lin)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(The effects of composition and thermal history on the properties of supported lipid bilayers)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effect of sterol on the POPE/DPPC membranes
★ 麥角固醇對含膽固醇的脂雙層膜的影響★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由基板支撐的脂質雙層經常被用在生物細胞膜的基礎研究上,除此之外也常常被當作為模型在研究生物探測器或是用在細胞膜融合蛋白質與細胞受器的研究上。但對於基板支撐的脂質雙層的物理特性並非完全了解。我們利用原子力顯微鏡 (AFM) 研究在雲母基板上的脂質雙層 (mica-supported lipid bilayers),而在本研究中脂質雙層主要由POPC和DPPC組成。首先我們借著改變降溫速率來探討降溫過程對脂質雙層的表面形態影響,當降溫速率增加時會造成脂質雙層產生較多且面積較小的凝膠相區塊。在研究脂質雙層的AFM影像與時間的關係中我們觀察到脂質雙層在到達特定溫度後,約需130鐘以達到平衡。而我們也研究脂質雙層的相變,從AFM影像與溫度的關係得知,在廣泛的溫度區間內皆可觀察到凝膠相與液晶相的共存,並且在實驗中只有觀察到一次從凝膠相到液晶相的相變。在POPC 和DPPC 構成的脂質雙層內沒有觀察到脂質雙層的非耦合現象。
摘要(英) Support Lipid bilayers are important in the fundamental studies of biological membrane; they could be as a model for incorporation of proteins and receptors or be used for investigation of biosensor. However, not of all physical prosperities are known clearly. We studied the physical properties of mica-supported lipid bilayers using atomic force microscopy (AFM). Our lipid bilayers consist of a binary mixture of POPC and DPPC. To study the effect of thermal process on the supported bilayer, AFM images of supported lipid bilayers were acquired as a function of cooling rate. We found that fast cooling rate produces a large number of smaller gel domains in the bilayer. To learn the equilibrium property of the supported bilayer, AFM images were also studied as a function of time. Our data shows that it takes about ~130 minutes for the bilayer to reach equilibrium after the temperature of the bilayer is raised to 25°C. To investigate the phase behavior of supported bilayers, AFM images were studied as a function of temperature. Coexistence of higher (or gel) and lower (or liquid) domains was found in a wide temperature range and only one gel-to-liquid phase transition was observed in the temperature range studied. Decoupling of the lipid bilayer is not observed in POPC/DPPC.
關鍵字(中) ★ 原子力顯微鏡
★ 雲母片效應
★ DPPC
★ POPC
★ SLBs
★ 基板支撐的脂質雙層
★ 細胞膜模型
★ fluidus temperature
關鍵字(英) ★ fluidus temperature
★ supported lipid bilayers
★ SLBs
★ POPC
★ DPPC
★ model membrane
★ AFM
★ mica effect
論文目次 Abstract I
摘要 II
致謝 III
Contents V
List of Figures VII
Chapter 1 Introduction 1
1.1. Introduction for membrane 1
1.2. Lipids 2
1.3. Model membrane 4
1.4. Support lipid bilayers 7
1.5. The effect of cooling rate on SLBs 8
1.6. The phase transition of supported lipid bilayer 9
1.6.1. Supported bilayers composed of pure DPPC 9
1.6.2. Supported bilayers composed of pure DMPC 11
1.6.3. Supported bilayers composed of two lipids 12
Chapter 2 Instrument and principle 14
2.1. Atomic force microscopy 14
2.2. BiocellTM 16
2.3. Scanning mode 17
2.4. Piezoelectric scanner: 19
2.5. Cantilever and Tips 20
2.6. Data processing and Analysis 20
Chapter 3 Preparation of Supported lipid bilayer 22
3.1. Materials 22
3.2. Supported lipid bilayers prepared by the vesicle fusion method 23
3.3. Annealing progress 25
Chapter 4 Results and Discussions 26
4.1. The effect of cooling rate on the morphology of SLBs 26
4.2. Changes in morphology over time 32
4.3. The temperature and composition dependences of the morphology of SLBs 36
Chapter 5 Conclusion 46
[Reference] 48
參考文獻 [Reference]
[1] M. Luckey, Membrane Structural Biology, 2008.
[2] M. BUDATHA, T.J. NINGSHEN, A. DUTTA-GUPTA, Is hexamerin receptor a GPI-anchored protein in Achaea janata?, Journal of biosciences 36 (2011) 545-553.
[3] N. Kucˇerka, M.A. Kiselev, P. Balgavy’, Determination of the bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods., Eur Biophys J 33 (2004) 328-334.
[4] S. Sanchez, M. Tricerri, G. Gunther, E. Gratton, Laurdan generalized polarization: from cuvette to microscope, Modern Research and Educational Topics in Microscopy, Formatex (2007) 1007-1014.
[5] J.K. Li, R.M. Sullan, S. Zou, Atomic force microscopy force mapping in the study of supported lipid bilayers, Langmuir 27 (2011) 1308-1313.
[6] R.M. Sullan, J.K. Li, C. Hao, G.C. Walker, S. Zou, Cholesterol-dependent nanomechanical stability of phase-segregated multicomponent lipid bilayers, Biophys J 99 (2010) 507-516.
[7] S. Garcia-Manyes, F. Sanz, Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective, Biochim Biophys Acta 1798 (2010) 741-749.
[8] E. Fahy, S. Subramaniam, H.A. Brown, C.K. Glass, A.H. Merrill, Jr, R.C. Murphy, C.R.H. Raetz, D.W. Russell, Y. Seyama, W. Shaw, T. Shimizu, F. Spener, G.v. Meer, M.S. VanNieuwenhze, S.H. White, J.L. Witztum, E.A. Dennis, A comprehensive classification system for lipids, Journal of Lipid Research 46 (2005) 839-861.
[9] D.E. Vance, J.E. Vance, Biochemistry of Lipid, Lipoproteins and Membranes, 5th ed., 2008.
[10] D. Keller, N.B. Larsen, I.M. Moller, O.G. Mouritsen, Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers, Phys Rev Lett 94 (2005) 025701.
[11] Eisenblatter, R. Winter, Pressure effects on the structure and phase behavior of DMPC-Gramicidin lipid ilayers: a synchrotron SAXS and 2H-NMR spectroscopy Biophysical Journal 90 (2006) 956-966.
[12] R. Rachana, R. Banerjee, Effects of albumin and erythrocyte membranes on spread monolayers of lung surfactant lipids, Colloids Surf B Biointerfaces 50 (2006) 9-17.
[13] R. Ziblat, L. Leiserowitz, L. Addadi, Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers, Journal of the American Chemical Society 132 (2010) 9920-9927.
[14] L. Zhao, S.S. Feng, Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane, Journal of Colloid and Interface Science 285 (2005) 326-335.
[15] K. Tada, M. Goto, N. Tamai, H. Matsuki, S. Kaneshina, Pressure effect on the bilayer phase transition of asymmetric lipids with an unsaturated acyl chain, Ann N Y Acad Sci 1189 (2010) 77-85.
[16] L. Zhao, S.S. Feng, Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes, Journal of Colloid and Interface Science 274 (2004) 55-68.
[17] W. Curatolo, B. Sears, L.J. Neuringer, A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines, Biochim Biophys Acta 817 (1985) 261-270.
[18] S.D. Shoemaker, T.K. Vanderlick, Material studies of lipid vesicles in the L(alpha) and L(alpha)-gel coexistence regimes, Biophysical journal 84 (2003) 998-1009.
[19] L.K. TAMM, H.M. MCCONNELL, SUPPORTED PHOSPHOLIPID BILAYERS, Biophysical Journal 47 (1985) 105-113.
[20] K. El Kirat, S. Morandat, Y.F. Dufrene, Nanoscale analysis of supported lipid bilayers using atomic force microscopy, Biochim Biophys Acta 1798 (2010) 750-765.
[21] K.L. Weirich, J.N. Israelachvili, D.K. Fygenson, Bilayer edges catalyze supported lipid bilayer formation, Biophys J 98 (2010) 85-92.
[22] T. Yang, S. Jung, H. Mao, P.S. Cremer, Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal Chem 73 (2001) 165-169.
[23] N. Vuong, J.E. Baenziger, L.J. Johnston, Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions, Chemistry and physics of lipids 163 (2010) 117-126.
[24] N. Kucerka, M.P. Nieh, J. Katsaras, Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature, Biochimica et biophysica acta 1808 (2011) 2761-2771.
[25] K.H. Sheikh, C. Giordani, J.I. Kilpatrick, S.P. Jarvis, Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers, Langmuir 27 (2011) 3749-3753.
[26] F. Yarrow, B.W. Kuipers, AFM study of the thermotropic behaviour of supported DPPC bilayers with and without the model peptide WALP23, Chem Phys Lipids 164 (2011) 9-15.
[27] Z.V. Leonenko, E. Finot, H. Ma, T.E. Dahms, D.T. Cramb, Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy, Biophysical Journal 86 (2004) 3783-3793.
[28] S. Garcia-Manyes, G. Oncins, F. Sanz, Effect of temperature on the nanomechanics of lipid bilayers studied by force spectroscopy, Biophys J 89 (2005) 4261-4274.
[29] Z.V. Feng, T.A. Spurlin, A.A. Gewirth, Direct visualization of asymmetric behavior in supported lipid bilayers at the gel-fluid phase transition, Biophysical Journal 88 (2005) 2154-2164.
[30] F. Yarrow, T. Vlugt, J. Van Der Eerden, M. Snel, Melting of a DPPC lipid bilayer observed with atomic force microscopy and computer simulation, Journal of Crystal Growth 275 (2005) e1417-e1421.
[31] A. Akesson, T. Lind, N. Ehrlich, D. Stamou, H. Wacklin, M. Cardenas, Composition and structure of mixed phospholipid supported bilayers formed by POPC and DPPC, Soft Matter (2012).
[32] U. Bernchou, J.H. Ipsen, A.C. Simonsen, Growth of solid domains in model membranes: quantitative image analysis reveals a strong correlation between domain shape and spatial position, J Phys Chem B 113 (2009) 7170-7177.
[33] J. Yang, J. Appleyard, The main phase transition of mica-supported phosphatidylcholine membranes, The Journal of Physical Chemistry B 104 (2000) 8097-8100.
[34] F. Tokumasu, A.J. Jin, J.A. Dvorak, Lipid membrane phase behaviour elucidated in real time by controlled environment atomic force microscopy, Journal of electron microscopy 51 (2002) 1-9.
[35] M.C. Giocondi, L. Pacheco, P.E. Milhiet, C. Le Grimellec, Temperature dependence of the topology of supported dimirystoyl–distearoyl phosphatidylcholine bilayers, Ultramicroscopy 86 (2001) 151-157.
[36] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Phys Rev Lett 56 (1986) 930-933.
[37] D. Rugar, P. Hansma, Atomic force microscopy, Phys. Today 43 (1990) 23-30.
[38] P.W. Hawkes, J.C.H. Spence, Science of Microscopy, 2008.
[39] R.-R. Liao, Development of Microfabricated Pt Catalyst and Temperature Sensors for A Micro Gas Reactor, Department of Aeronautics & Astronautics, National Cheng Kung University, 2002.
[40] Y.-C. Hung, Investigation of LED Cooling With Thermoelectric Cooler, National Taiwan University 2007.
[41] W.-c. Chen, Dynamic Simulation and Vibration Analysis od the Atomic Force Microscope by Finite Element Method, National Taiwan University of Science and Techology, 2005.
[42] S.-S. Chyou, The morphology of DPPC/DOPC bilayers on mica and the substrate effect: an AFM study, National Central University, 2009.
[43] Wen-BinWei, The Electro-Mechanical Field of a Piezoelectric Bonded Wedge Under Anti-plane Shear Loading, National Cheng Kung University, 2002.
[44] C. R., N. S.S., M. A.G., Effect of cooling rate on the structure and mechanical properties of milk fat and lard, Food Research International 35 (2002) 971-981.
[45] K. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology, A Pergamon Title, 2010.
[46] E. Pupier, S.p. Duchene, M.J. Toplis, Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid, Contrib Mineral Petrol 155 (2008) 555-570.
[47] R.B. Gennis, Biomembranes: molecular structure and function, Springer-Verlag New York, 1989, page 68.
[48] D. Stenger, K. Kaler, S. Hui, Dipole interactions in electrofusion. Contributions of membrane potential and effective dipole interaction pressures, Biophysical Journal 59 (1991) 1074-1084.
[49] B. Wang, L. Zhang, S.C. Bae, S. Granick, Nanoparticle-induced surface reconstruction of phospholipid membranes, Proc Natl Acad Sci U S A 105 (2008) 18171-18175.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明