博碩士論文 982210001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.138.36.168
姓名 廖英凱(Ying-Kai Liao)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 含固醇的脂質雙層膜的形態及相行為的研究
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ The effects of composition and thermal history on the properties of supported lipid bilayers★ The effect of sterol on the POPE/DPPC membranes
★ 麥角固醇對含膽固醇的脂雙層膜的影響★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 生物膜上存在著橫向異質(lateral heterogeneities)的特性,這些特性是因膜上有不同物理與化學性質的區塊(domain)。這些被稱為脂質筏(lipid raft)的區塊,含有高含量的膽固醇和神經鞘脂與GPI 錨泊蛋白。近期關於人造細胞膜的研究表示,固醇的加入可使膜產生lo 相。在DOPC、DPPC 及cholesterol 所組成的巨型單層微胞(GUV)上,則可觀察到七種不同的相與共存相。本論文主要利用螢光顯微術,以NBD-DOPE 作為標示液態無序相態(ld 相)的螢光探劑,觀察由DOPC、DPPC、ergosterol 所組成GUV 的螢光影像,以探討人造膜表面形態學及相行為與溫度和GUV 成分的關係。並藉由分析螢光影像中暗區的形狀歸納出GUV 上的小塊暗區(dark micro 區)為lo2 相,而大塊暗區(dark macro 區)為lo1 相。lo1 相比lo2 相有序。結果顯示,ergosterol 的加入會促進lo 相的形成,並可觀測到lo1+ lo2 + ld 共存。
摘要(英) The biological membrane has a feature of lateral heterogeneities. The feature is proposed to be a coexistence of domains which termed lipid rafts with different physical and chemical properties. Lipid rafts are enriched in cholesterol, sphingolipid, and GPI-anchored proteins. Recent evidence suggests that several sterols such as cholesterol and ergosterol are important to form liquid ordered phase (lo phase) in the lipid bilayer. Also, there are seven kinds of phases and coexistence phases are observed by the giant unilamellar vesicles (GUV) composed of DOPC, DPPC, and cholesterol. We investigate the membrane morphology and phase behavior of GUVs composed of DOPC, DPPC, and ergosterol using fluorescence microscopy. The NBD-DOPE is used to be a fluorescent probe to label the liquid disordered phase (ld phase). The fluorescent images of GUVs were studied as a function of temperature and composition. By analyzing the shape of dark-phase domains in the fluorescent image, we generalize the dark micro and dark macro regions are both in the lo phase, however the lo phase in the dark macro region is slightly ordered than that in the dark micro region. Our data shows that addition of ergosterol promotes the formation of lo phase. Moreover, coexistence of ld + lo1 + lo2 phase is observed.
關鍵字(中) ★ 生物物理
★ 脂雙層膜
★ 人造細胞膜
★ 螢光顯微術
★ 單層巨型微胞
關鍵字(英) ★ biophysics
★ Giant Unilamellar Vesicles
★ fluorescence microscopy
★ lipid bilayer
論文目次 提要 I
英文提要 II
致謝 III
目錄 V
圖目 VII
表目 X
第一章 1
緒論 1
1.1 細胞膜概述 1
1.2 脂質筏 (Lipid rafts) 1
1.3 細胞膜的相行為 (phase behavior) 4
1.4 DOPC/DPPC/sterol 的相關研究 7
第二章 12
材料與方法
2.1 實驗材料 12
2.2 GUV 製備 13
2.3 螢光顯微術 15
VI
2.3.1 螢光顯微術原理 15
2.3.2 螢光探劑 (Fluorescence probe) 16
2.3.3 螢光顯微鏡硬體架構 18
2.3.4 螢光亮暗區塊面積比率分析 20
2.4 NBD-DPPE 與 TR-DHPE 在GUV 上的分布比較 21
第三章 23
實驗結果與討論
3.1 Ergosterol 對DOPC/DPPC/erg GUVs 的影響 23
3.2 DOPC/DPPC 比例對DOPC/DPPC/erg GUVs 的影響 26
3.3 溫度對DOPC/DPPC/erg GUVs 的影響 29
3.3.1 (3:7 DOPC/DPPC) + 30 mol% erg 29
3.3.2 (4:6 DOPC/DPPC) + 30 mol% erg 32
3.3.3 DOPC/DPPC/erg 的相圖 40
第四章 42
結論
參考文獻 44
參考文獻 [1] A.B. Harvey Lodish, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P.
Scott, Lawrence Zipursky, and James Darnell, Molecular Cell Biology, 5th ed.,
W. H. Freeman, 2003.
[2] S. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell
membranes, Landmark Papers in Cell Biology (1972) 296-307.
[3] K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387 (1997)
569-572.
[4] M.M.C. David L. Nelson, Lehninger Principles of Biochemistry, Fourth Edition, 4
ed., W. H. Freeman, 2004.
[5] M. Luckey, Membrane structural biology: with biochemical and biophysical
foundations, Cambridge Univ Pr, 2008.
[6] M. Edidin, The state of lipid rafts: from model membranes to cells, Annual review
of biophysics and biomolecular structure 32 (2003) 257-283.
[7] D.A. Brown, E. London, Structure and function of sphingolipid-and
cholesterol-rich membrane rafts, Journal of Biological Chemistry 275 (2000)
17221-17224.
[8] E. Endress, S. Bayerl, K. Prechtel, C. Maier, R. Merkel, T.M. Bayerl, The effect of
cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical
properties at molecular and microscopic dimensions: a solid-state NMR and
micropipet study, Langmuir 18 (2002) 3293-3299.
[9] Y.W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, J. Thewalt, The effect of
ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and
calorimetric study, Biophysical journal 88 (2005) 1799-1808.
[10] D.A. Mannock, R.N.A.H. Lewis, R.N. McElhaney, Comparative calorimetric and
spectroscopic studies of the effects of lanosterol and cholesterol on the
thermotropic phase behavior and organization of
dipalmitoylphosphatidylcholine bilayer membranes, Biophysical journal 91
(2006) 3327-3340.
[11] M.E. Beattie, S.L. Veatch, B.L. Stottrup, S.L. Keller, Sterol structure determines
miscibility versus melting transitions in lipid vesicles, Biophysical journal 89
(2005) 1760-1768.
[12] Y.W. Hsueh, M.T. Chen, P.J. Patty, J. Cheng, B.J. Frisken, M. Zuckermann, J.
Thewalt, Ergosterol in POPC membranes: physical properties and comparison
with structurally similar sterols, Biophysical journal 92 (2007) 1606-1615.
45
[13] J. Eisenblatter, R. Winter, Pressure Effects on the structure and phase behavior of
DMPC-gramicidin lipid bilayers: a synchrotron SAXS and 2H-NMR
spectroscopy study, Biophysical journal 90 (2006) 956-966.
[14] S.L. Veatch, S.L. Keller, Organization in lipid membranes containing cholesterol,
Physical review letters 89 (2002) 268101.
[15] F. De Meyer, B. Smit, Effect of cholesterol on the structure of a phospholipid
bilayer, Proceedings of the National Academy of Sciences 106 (2009) 3654.
[16] J. Rubenstein, B.A. Smith, H.M. McConnell, Lateral diffusion in binary mixtures of
cholesterol and phosphatidylcholines, Proceedings of the National Academy
of Sciences 76 (1979) 15.
[17] J.M. Vanegas, R. Faller, M.L. Longo, Influence of ethanol on lipid/sterol
membranes: phase diagram construction from AFM imaging, Langmuir 26
(2010) 10415-10418.
[18] S.L. Veatch, From small fluctuations to large-scale phase separation: lateral
organization in model membranes containing cholesterol, Seminars in cell &
developmental biology 18 (2007) 573-582.
[19] S.L. Veatch, S.L. Keller, Separation of liquid phases in giant vesicles of ternary
mixtures of phospholipids and cholesterol, Biophysical journal 85 (2003)
3074-3083.
[20] S. Veatch, S. Keller, Miscibility Phase Diagrams of Giant Vesicles Containing
Sphingomyelin, Physical review letters 94 (2005).
[21] S. Veatch, I. Polozov, K. Gawrisch, S. Keller, Liquid domains in vesicles
investigated by NMR and fluorescence microscopy, Biophysical journal 86
(2004) 2910-2922.
[22] J.H. Davis, J.J. Clair, J. Juhasz, Phase equilibria in DOPC/DPPC-d62/cholesterol
mixtures, Biophysical journal 96 (2009) 521-539.
[23] R. Elliott, I. Szleifer, M. Schick, Phase Diagram of a Ternary Mixture of Cholesterol
and Saturated and Unsaturated Lipids Calculated from a Microscopic Model,
Physical review letters 96 (2006) 098101.
[24] D.M.C. Ramirez, W.W. Ogilvie, L.J. Johnston, NBD-cholesterol probes to track
cholesterol distribution in model membranes, Biochimica et Biophysica Acta
(BBA)-Biomembranes 1798 (2010) 558-568.
[25] J.M. Vanegas, M.F. Contreras, R. Faller, M.L. Longo, Role of Unsaturated Lipid and
Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes, Biophysical
journal 102 (2012) 507-516.
[26] K. Bacia, J. Schweizer, Practical Course: Giant Unilamellar Vesicles, Technische
Universit t: Dresden, Germany (2005).
[27] Y. Sakuma, M. Imai, M. Yanagisawa, S. Komura, Adhesion of binary giant vesicles
46
containing negative spontaneous curvature lipids induced by phase
separation, The European Physical Journal E: Soft Matter and Biological
Physics 25 (2008) 403-413.
[28] T. Baumgart, G. Hunt, E.R. Farkas, W.W. Webb, G.W. Feigenson, Fluorescence
probe partitioning between Lo/Ld phases in lipid membranes, Biochimica et
Biophysica Acta (BBA)-Biomembranes 1768 (2007) 2182-2194.
[29] L.C. Silva, R.F.M. de Almeida, B.M. Castro, A. Fedorov, M. Prieto,
Ceramide-domain formation and collapse in lipid rafts: membrane
reorganization by an apoptotic lipid, Biophysical journal 92 (2007) 502-516.
[30] R.F.M. de Almeida, L. Loura, M. Prieto, Membrane lipid domains and rafts:
current applications of fluorescence lifetime spectroscopy and imaging,
Chemistry and physics of lipids 157 (2009) 61-77.
[31] L. Loura, R.F.M. De Almeida, L.C. Silva, M. Prieto, FRET analysis of domain
formation and properties in complex membrane systems, Biochimica et
Biophysica Acta (BBA)-Biomembranes 1788 (2009) 209-224.
[32] A. Filippov, G. Oradd, G. Lindblom, The effect of cholesterol on the lateral
diffusion of phospholipids in oriented bilayers, Biophysical journal 84 (2003)
3079-3086.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明