參考文獻 |
[1] Perez-Diez, A., A. Morgun, and N. Shulzhenko, Microarrays for cancer diagnosis and classification. Adv Exp Med Biol, 2007. 593: p. 74-85.
[2] Miller, J.A., M.C. Oldham, and D.H. Geschwind, A systems level analysis of transcriptional changes in Alzheimer’’s disease and normal aging. J Neurosci, 2008. 28(6): p. 1410-20.
[3] Cui, X. and G.A. Churchill, Statistical tests for differential expression in cDNA microarray experiments. Genome Biol, 2003. 4(4): p. 210.
[4] Zaravinos, A., et al., Identification of common differentially expressed genes in urinary bladder cancer. PLoS One, 2011. 6(4): p. e18135.
[5] Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5116-21.
[6] Smyth, G.K., Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 2004. 3: p. Article3.
[7] Pavlidis, P., Using ANOVA for gene selection from microarray studies of the nervous system. Methods, 2003. 31(4): p. 282-9.
[8] Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
[9] Kanehisa, M., et al., KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res, 2012. 40(Database issue): p. D109-14.
[10] Hosack, D.A., et al., Identifying biological themes within lists of genes with EASE. Genome Biol, 2003. 4(10): p. R70.
[11] Nam, D. and S.Y. Kim, Gene-set approach for expression pattern analysis. Brief Bioinform, 2008. 9(3): p. 189-97.
[12] Mootha, V.K., et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003. 34(3): p. 267-73.
[13] Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
[14] Efron, B. and R. Tibshirani, On Testing the Significance of Sets of Genes. Annals of Applied Statistics, 2007. 1(1): p. 107-129.
[15] Barry, W.T., A.B. Nobel, and F.A. Wright, Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics, 2005. 21(9): p. 1943-9.
[16] Breslin, T., P. Eden, and M. Krogh, Comparing functional annotation analyses with Catmap. BMC Bioinformatics, 2004. 5: p. 193.
[17] Lee, H.K., et al., ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics, 2005. 6: p. 269.
[18] Dinu, I., et al., Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics, 2007. 8: p. 242.
[19] Prifti, E., et al., FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics, 2008. 24(22): p. 2636-8.
[20] Vaske, C.J., et al., Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 2010. 26(12): p. i237-45.
[21] Sun, C.H., et al., COFECO: composite function annotation enriched by protein complex data. Nucleic Acids Res, 2009. 37(Web Server issue): p. W350-5.
[22] Wong, D.J., et al., Revealing targeted therapy for human cancer by gene module maps. Cancer Res, 2008. 68(2): p. 369-78.
[23] Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): p. 1929-35.
[24] Ben-Dor, A., et al., Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol, 2003. 10(3-4): p. 373-84.
[25] Tanay, A., R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene expression data. Bioinformatics, 2002. 18 Suppl 1: p. S136-44.
[26] Li, Q.L., et al., PubChem as a public resource for drug discovery. Drug Discovery Today, 2010. 15(23-24): p. 1052-1057.
[27] Zhu, F., et al., Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res, 2012. 40(Database issue): p. D1128-36.
[28] Hollander, M. and D. Wolfe, Nonparametric Statistical Methods 2ed. 1999, New York: Wiley.
[29] Lamb, J., et al., A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell, 2003. 114(3): p. 323-34.
[30] Manning, C.D., P. Raghavan, and H. Schutze, Introduction to Information Retrieval: Cambridge University Press.
[31] Li, Q., et al., PubChem as a public resource for drug discovery. Drug Discov Today, 2010. 15(23-24): p. 1052-7.
[32] Richon, V.M., Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer, 2006. 95(S1): p. S2-S6.
[33] Gottlicher, M., et al., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J, 2001. 20(24): p. 6969-78.
[34] Kemp, M.G., et al., The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res, 2005. 33(1): p. 325-36.
[35] Keen, J.C., et al., A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2’’-deoxycytidine. Breast Cancer Res Treat, 2003. 81(3): p. 177-86.
[36] Balakin, K.V., et al., Histone deacetylase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective. Anticancer Agents Med Chem, 2007. 7(5): p. 576-92.
[37] Wood, E.R., et al., Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg Med Chem Lett, 2004. 14(4): p. 953-7.
[38] Lahusen, T., et al., Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Mol Carcinog, 2003. 36(4): p. 183-94.
[39] Keller, H.U., A. Zimmermann, and V. Niggli, Diacylglycerols and the protein kinase inhibitor H-7 suppress cell polarity and locomotion of Walker 256 carcinosarcoma cells. Int J Cancer, 1989. 44(5): p. 934-9.
[40] Tan, C., et al., Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer, 1967. 20(3): p. 333-53.
[41] Rose, M.G., Hematology: Azacitidine improves survival in myelodysplastic syndromes. Nat Rev Clin Oncol, 2009. 6(9): p. 502-3.
[42] Ko, M.W., et al., Acute promyelocytic leukemic involvement of the optic nerves following mitoxantrone treatment for multiple sclerosis. J Neurol Sci, 2008. 273(1-2): p. 144-7.
[43] Kim, J.Y., et al., Ellipticine induces apoptosis in human endometrial cancer cells: the potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology, 2011. 289(2-3): p. 91-102.
[44] Ulukan, H. and P.W. Swaan, Camptothecins: a review of their chemotherapeutic potential. Drugs, 2002. 62(14): p. 2039-57.
[45] Rubin, B.K. and J. Tamaoki, Antibiotics as anti-inflammatory and immunomodulatory agents. Pir. 2005, Basel ; Boston: Birkhauser. xiii, 273 p.
[46] Sanders, W.E., Jr., Antibiotics during anesthesia and surgery. Int Anesthesiol Clin, 1968. 6(1): p. 211-8.
[47] Smith, T.J., S.A. Blackman, and S.J. Foster, Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology, 2000. 146 ( Pt 2): p. 249-62.
[48] Holtje, J.V., From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol, 1995. 164(4): p. 243-54.
[49] Garcia, P., et al., LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol, 1999. 31(4): p. 1275-81.
[50] Garman, K.S., et al., A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc Natl Acad Sci U S A, 2008. 105(49): p. 19432-7.
[51] Huang, L., et al., An integrated bioinformatics approach identifies elevated cyclin E2 expression and E2F activity as distinct features of tamoxifen resistant breast tumors. PLoS One, 2011. 6(7): p. e22274.
[52] Wang, G., et al., Expression-based in silico screening of candidate therapeutic compounds for lung adenocarcinoma. PLoS One, 2011. 6(1): p. e14573.
[53] Segal, M.R., et al., Querying genomic databases: refining the connectivity map. Stat Appl Genet Mol Biol, 2012. 11(2).
[54] Flynn, C., et al., Connectivity Map Analysis of NMD+ BMPR2 Related HPAH Provides Insights into Disease Penetrance. Am J Respir Cell Mol Biol, 2012.
[55] Damian, D. and M. Gorfine, Statistical concerns about the GSEA procedure. Nature Genetics, 2004. 36(7): p. 663-663.Mootha, V.K., et al., Statistical concerns about the GSEA procedure - Reply. Nature Genetics, 2004. 36(7): p. 663-663.
|