博碩士論文 992206008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.85.96
姓名 王漢哲(Han-Zhe Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用電子迴旋共振化學氣相沉積法成長矽基太陽能電池
(Growth of silicon-based solar cells by Electron cyclotron resonance chemical vapor deposition)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本研究以電子迴旋共振氣相沉積法(ECR-CVD)來討論磊晶矽薄膜沉積於矽基板之同質介面太陽能電池上的應用。ECR-CVD屬於高密度電漿源的薄膜沉積製程設備,主要運用當電子於磁場內受磁力影響做螺旋運動之迴轉角頻率和入射微波共振吸收微波能量撞擊製程氣體解離產生高密度電漿。相較於傳統的PECVD,ECR-CVD有沉積速度快、工作壓力低、較低離子轟擊效應、無電擊汙染…等優勢。
本研究將利用ECR-CVD於矽基板沉積高品質磊晶層,相較於傳統單晶矽太陽能電池須以高溫擴散製程或離子佈質方式製作摻雜層,本實驗將以化學氣象沉積方式於低溫(<200℃)製備摻雜層[1]及製作背表面反向電場(BSF),藉由調變混氣比例、製程溫度、微波功率、薄膜厚度以及前後段製程的改良,沉積20nm有效之p磊晶參雜層於矽基板,此單層結構在無抗反射層下,轉換效率可達8.679%。另外經由背表面電場設計,使薄膜微結構偏向非晶,藉由氫化非晶有較佳表面鈍化效果,成功降低長波光波長所貢獻之少數載子於背表面複合,提高開路電壓和短路電流。實驗結果在在加上抗反射層之平面結構下,可得到太陽能電池轉換效率為(η)=13.67%;開路電壓(Voc)=556.3mV;短路電流(Jsc)=37.18mA;填充因子(FF)=66.07%;而在金字塔結構下可得到太陽能電池轉換效率為(η)=17.69%;開路電壓(Voc)=563.5mV;短路電流(Jsc)=42.36mA;填充因子(FF)=74.12%
摘要(英) Abstract
This study used Electron cyclotron resonance chemical vapor deposition (ECR-CVD) to discuss epi-Si thin films deposited on silicon substrates of homojunction solar cell applications. ECR-CVD is the high density plasma sources for thin film deposition process equipment. The principle is that electrons under the influence of magnetic fields will do coning motion, when angular frequency and incidence of microwave frequency match each other, it will absorb microwave energy to make gas atom ionization for high density plasma. Compared with PECVD, it has many advantages such as higher deposition rate, lower working pressure, lower ion bombardment effect, and no pollution of electric shock…etc.
This study will deposit high quality epi-Si thin film on c-Si substrate by ECR-CVD. Traditionally, monocrystalline silicon solar cells form doping layers with high temperature diffusion process and ion implant. This experiment will prepare emitter layers and the back surface field (BSF) by chemical vapor deposition in very low temperature(< 200 ℃). We deposited 20nm p-type epi-Si layers on the c-Si substrate through modulation of gas mixing ratio, process temperature, microwave power, thin film thickness as well as front and after process improvement. Under this single-layer plane structure without anti-reflective layer, the conversion efficiency is 8.679%. Otherwise, transferring the back surface thin-film micro-structure from microcrystalline to amorphous, we improved open circuit voltage and short-circuit current because of hydrogenated amorphous silicon with better surface passivation reducing minority carrier recombination from long-wavelength photon on back surface. The result with anti-reflection in plane structure have conversion efficiency (η) =13.67%; open circuit voltage (Voc) =556.3mV; short circuit currents (Jsc) =37.18mA ; fill factor (FF) =66.07%. In the pyramid structure, we have conversion efficiency (η) =17.69% open circuit voltage (Voc) =563.5mV; short circuit currents (Jsc) =42.36mA; fill factor (FF) =74.12%.
關鍵字(中) ★ 電子迴旋共振
★ 太陽能電池
關鍵字(英) ★ solar cells
★ ECR-CVD
論文目次 目錄
第一章、前言 1
1.1 研究動機 1
1.2 太陽能電池的發展 1
1.3 矽晶太陽能電池之發展與比較 3
1.4 論文架構 6
第二章 基本原理 7
2.1 矽薄膜基本成長機制與特性 7
2.2 電子迴旋共振化學氣相沉積之原理 9
2.3 太陽能電池原理與效率計算 11
2.3.1 太陽能電池原理 11
2.3.2 太陽能電池之參數與效率轉換 16
2.4 太陽能電池結構效率提升之方法與原理 19
2.4.1 表面粗糙化結構 19
2.4.2 生命期與背表面復合效應 20
第三章 研究方法 22
3.1 製程設備ECR-CVD簡介 22
3.1.1 進氣系統 23
3.1.2 抽氣與加熱系統 24
3.1.3 微波共振系統 25
3.2 樣品製備與流程與設備簡介 26
3.2.1 試片清洗流程 26
3.2.2 磊晶矽薄膜太陽能電池製備流程 26
3.2.3 電子槍蒸鍍系統(E-GUN) 28
3.2.4 濺鍍系統(sputter) 29
3.2.5 快速熱退火(RTA) 30
3.3 量測與分析方法 31
3.3.1 表面輪廓儀(Dektak) 31
3.3.2 原子力顯微鏡(AFM) 32
3.3.3 場發式電子顯微鏡(SEM) 33
3.3.4 穿透式電子顯微鏡(TEM) 34
3.3.5 橢圓偏振儀(ellipsometer) 35
3.3.6 光譜響應/量子效率量測儀 36
3.3.7 太陽光源模擬器效率量測和二極體特性量測 37
第四章 實驗結果與討論 38
4.1 單層磊晶矽薄膜太陽能電池製程優化與量測分析 38
4.1.1 微波功率對磊晶矽薄膜太陽能電池效率的影響 38
4.1.2 氫氣混氣比對磊晶矽薄膜太陽能電池效率的影響 40
4.1.3 摻雜氣體對磊晶矽薄膜太陽能電池效率的影響 42
4.1.4 製程溫度對磊晶矽薄膜太陽能電池效率的影響 43
4.1.5 射極層厚度對磊晶矽薄膜太陽能電池效率的影響 45
4.2 背表面電場(BSF)薄膜層製程優化與量測分析 48
4.2.1 氫氣混氣比對BSF的影響 50
4.2.2 氬氣流量對BSF的影響 53
4.2.3 摻雜氣體對BSF的影響 54
4.3 前段潔淨製程優化與量測分析 56
4.3.1 氫氟酸蝕刻晶圓氧化層時間對磊晶矽薄膜太陽能電池效率的影響 56
4.3.2 晶圓溼氧化法與化學氧化對磊晶矽薄膜太陽能電池效率的影響 58
4.3.3 氫(H2)電漿處理對磊晶矽薄膜太陽能電池效率的影響 59
4.4 後段製程優化與量測分析 62
4.4.1 金屬電極之優化對磊晶矽薄膜太陽能電池效率的影響 62
4.4.2 金字塔結構與抗反射層對磊晶矽薄膜太陽能電池效率的影響 65
第五章 結論 70
參考文獻 72
參考文獻 參考文獻
[1] Hassan El Gohary,” Development of Low-Temperature Epitaxial Silicon Films and Application to Solar Cells”
[2] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H.Hanafusa, and Y. Kuwano, ”Development of new a-Si/c-si heterojunction solar cell:ACJ-HIT(Artificially Constructed Junction-Heterojunction with Intrinsic Thin- Layer )”, Jpn. J. Appl. Phys. Vol. 31(1992).
[3] M. Tanaka, S. Okamoto, S. Tsuge, and S. Kiyama, ”Development of HIT solar cell with more than 21% conversion efficiency and commercialization of high performance HIT modules”, 3rd Word Conference Photovoltaic Energy Conversion, 4O-D10-01.
[4] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Kinoshita, H.Kanno, H. Sakata, E. Maruyama, and M. Tanaka, ”22% efficiency HIT solar cell” .
[5] N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, K. Horie, K. Nakamoto, and H. Abe, “High performance electron cyclotron resonance plasma etching with control of magnetic field gradient”, J.J.A.P. Vol. 30, No. 11B, November, 1991.
[6] S. Samukawa, T. Nakamura, “Dependence of electron cyclotron resonance plasma characteristics on magnetic field profiles”, J.J.A.P. Vol. 30, No. 7B, July 1991.
[7] D. H. Thang, H. Muta, Y. Kawai, “Investigation of plasma parameters in 915MHz ECR plasma with SiH4/H2 mixtures”, Thin Solid Films 516 (2008) 4452– 4455.
[8] R. Shimokawa, M. Yamanaka, and I. Sakata, “Very low temperature epitaxial growth of silicon film for solar cells”, J.J.A.P. Vol. 46, No. 12, 2007.
[9] H. Fujiwara, and M. Kondo, “Effect of a-Si:H layer thickness on the performance of a-Si:H/c-Si heterojunction solar cells”, Journal of Applied Physics 101, 054516 2007.
[10] S. R. Dhariwa, and Arun P. Kulshresht, “Theory of back surface field silicon solar cells”, Solid-State Electronic Vol. 24, No. 12, 1981.
[11] O. V. Roos, “A simple theory of back surface field (BSF) solar cells” J. Appl. Phys. 49, 3503 (1978).
[12] L. Zhao, H. Diao, X. Zeng, C. Zhou, H. Li , and W. Wang, ” Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures”, Elsevier, Physica B 405 (2010) 61–64.
[13] M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, and R. W. Birkmire, ” Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, J. Vac. Sci. Technol. A 26(4) , Jul/Aug 2008.
[14] L. Wang and H. S. Reehal, “Thin base-layer single crystal silicon solar cells with ECR plasma CVD grown emitters”, J. Phys. D: Appl. Phys. 34 (2001).
[15] M.R. Page, E. Iwaniczko, Y. Xu, Q. Wang, Y. Yan, L. Roybal, Howard M. Branz, and T.H. Wang, “Well passivated a-si:H back contacts for double-heterojunction silicon solar cells” 1-4244-0016-3/06/$20.00 ©2006 IEEE.
[16] A.G. Ulyashin, M. Scherff, M. Gao, R. Sondermann, W.R. Fahrner, ” Processing of Si-based heterojunction solar cells and properties of interfaces” University of Hagen, Germany Department of Electrical Engineering and Information Technology (LGBE).
[17] L. Zhao, H. Diao, X. Zeng, C. Zhou, H. Li , and W. Wang, ” Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures”, Elsevier, Physica B 405 (2010) 61–64.
[18] L. Wang and H. S. Reehal, “Thin base-layer single crystal silicon solar cells with ECR plasma CVD grown emitters”, J. Phys. D: Appl. Phys. 34 (2001).
[19] M. Moreno, M. Labrune, P. Roca i Cabarrocas, “Dry fabrication process for heterojunction solar cells through in-situ plasma cleaning and passivation”,Solar Energy Materials & Solar Cells 94 (2010) 402–405.
指導教授 張正陽(Jenq -Yang Chang) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明