參考文獻 |
1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467-470 (1995).
2. Tan, P.K. et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic acids research31, 5676-5684 (2003).
3. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science298, 597-600 (2002).
4. Ivanova, N.B. et al. A stem cell molecular signature. Science298, 601-604 (2002).
5. Miller, R.M. et al. Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra. The Journal of neuroscience : the official journal of the Society for Neuroscience24, 7445-7454 (2004).
6. Fortunel, N.O. et al. Comment on " ’’Stemness’’: transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science302, 393; author reply 393 (2003).
7. Miklos, G.L. & Maleszka, R. Microarray reality checks in the context of a complex disease. Nature biotechnology22, 615-621 (2004).
8. Frantz, S. An array of problems. Nature reviews. Drug discovery4, 362-363 (2005).
9. Marshall, E. Getting the noise out of gene arrays. Science306, 630-631 (2004).
10. Michiels, S., Koscielny, S. & Hill, C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet365, 488-492 (2005).
11. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences of the United States of America103, 5923-5928 (2006).
12. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature biotechnology24, 1151-1161 (2006).
13. Shi, L. et al. Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. BMC bioinformatics6 Suppl 2, S12 (2005).
14. Guo, L. et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nature biotechnology24, 1162-1169 (2006).
15. Chen, C. et al. Gene expression profiling identifies genes predictive of oral squamous cell carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology17, 2152-2162 (2008).
16. Demmer, R.T. et al. Transcriptomes in healthy and diseased gingival tissues. Journal of periodontology79, 2112-2124 (2008).
17. Pedersen, M.B., Skov, L., Menne, T., Johansen, J.D. & Olsen, J. Gene expression time course in the human skin during elicitation of allergic contact dermatitis. The Journal of investigative dermatology127, 2585-2595 (2007).
18. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols4, 44-57 (2009).
19. Huang da, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research37, 1-13 (2009).
20. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America98, 5116-5121 (2001).
21. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology3, Article3 (2004).
|