以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:18.117.151.127
姓名 王利民(Li-Ming Wang) 查詢紙本館藏 畢業系所 系統生物與生物資訊研究所 論文名稱 利用大腸桿菌蛋白質體晶片分析新生兒血液中的免疫球蛋白
(Infant serum immunoglobulin analysis using Escherichia coli proteome microarrays)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 免疫球蛋白又被稱作抗體,在人體的免疫系統中扮演著重要的角色。許多的研究利用抗體在血液中的濃度變化來預測相關疾病的發生。同時,也有許多文獻指出血液中抗體的濃度會隨著年齡的增長而有所變化。迄今,會與抗體所結合的蛋白質卻尚未以有效率且可靠的方式來被識別出。因此,我們利用高通量大腸桿菌蛋白質晶片與生物資訊的分析來探討被抗體所結合的蛋白質在生物功能上的作用為何。首先,我們將健康新生兒與成人的血清稀釋後佈滿到大腸桿菌蛋白質體晶片上,然後將代表信號強度的數據正規化,正規化過後的數據再以BiNGO結合Cytoscape與Gene Ontology資料庫來進行生物功能上的分析。我們的結果指出,在高免疫的族群中,大部分會與抗體結合的蛋白質都是屬於細胞內部的蛋白質;在低免疫的族群中,大部分會與抗體結合的蛋白質則是屬於膜蛋白。再者,會與IgA及IgM所結合的蛋白質,在生物功能上大部份是參與新陳代謝的反應,而會與IgG所結合的蛋白質,則大部份是屬於巨分子複合物。上面的結果意謂著不同的抗體對於不同功能性的蛋白質會有特定的專一性;換句話說,抗體在清除病原體時,是利用特定的抗體作用在病原體中特定功能的蛋白質上,進而破壞病原體在人體體內中存活的機能。
摘要(英) Immunoglobulin is also known as antibody, it plays an important role in human adaptive immune system. Many researches predicted the human diseases by observing the significant changes of the antibody’s concentration. Moreover, several of scientific literatures showed the development of the antibody’s concentration during each different growing age in human serum. So far, the antibody binding proteins and their enriched functionality have not been identified. For this reason, we applied the E. coli proteome microarray and bioinformatics analysis to identify the antibody binding proteins and their biological functionalities in a fast and high-throughput technique. We probed infant and adult sera with E. coli proteome microarrays, and then normalized the numerical data. The normalized data were analyzed by the BiNGO plug-in Cytoscape based on Gene Ontology (GO) database. The results of the BiNGO analysis showed that the antibody binding proteins were intracellular if they had highly signal intensity in highly immunogenic samples, otherwise the antibody binding proteins were membrane protein. Furthermore, IgA and IgM binding proteins were associated with metabolic process, and IgG binding proteins were associated with macromolecular complex in highly immunogenic samples. The results suggest that each antibody profiling have a specific target of protein’s functionality by using the E. coli proteome microarray and combined with the bioinformatics analysis, so the pathogens would be eliminated by different antibodies interact with their specific functionality on antigens of pathogen’s proteins.
關鍵字(中) ★ 新生兒
★ 血清
★ 免疫球蛋白
★ 免疫系統
★ 蛋白質體晶片
★ 抗體關鍵字(英) ★ Immunoglobulin
★ Immune system
★ Antibody
★ Proteome microarray
★ Infant
★ Serum論文目次 摘要......................................................i
ABSTRACT................................................iii
誌謝......................................................v
Table of Contents........................................vi
List of Figures........................................viii
List of Tables............................................x
I INTRODUCTION............................................1
I. 1. Immune system.......................................1
I. 1. 1. Innate immune system.............................3
I. 1. 2. Adaptive immune system...........................3
I. 2. Immunoglobulin......................................4
I. 2. 1. Immunoglobulin A.................................6
I. 2. 2. Immunoglobulin G.................................6
I. 2. 3. Immunoglobulin M.................................7
I. 3. Commensal intestine bacteria and humoral immunity
maturation in infants...............................8
I. 4. Gene Ontology database..............................9
I. 5. Study hypothesis and goal..........................10
II MATERIALS AND METHODS.................................11
II. 1. Profiling comparison of infant and adult serum....11
II. 2. Cluster analysis..................................12
II. 2. 1. K-means clustering.............................13
II. 2. 1. 1. The K-means algorithm.......................13
II. 2. 2. Hierarchical clustering....................... 14
II. 2. 2. 1. Euclidean’s distance.......................15
II. 2. 2. 2. Complete linkage algorithm..................15
II. 3. BiNGO analysis....................................16
II. 3. 1. The hypergeometric distribution................16
II. 4. Significance analysis of E. coli proteome
microarrays.......................................17
III. RESULTS.............................................19
III. 1. Differentiate between infant and adult serum
samples..........................................19
III. 1. 1. List of lowly and highly immunogenic serum
samples.......................................20
III. 2. Identification of the proteins which induced the
samples to low or high immunogenicity............21
III. 2. 1. IgM profiling.................................21
III. 2. 2. IgG profiling.................................22
III. 2. 3. IgA profiling.................................23
III. 3. Statistically significant functionalities of
proteins which induced the samples to low or
high immunogenicity..............................24
III. 3. 1. IgM profiling.................................25
III. 3. 2. IgG profiling.................................27
III. 3. 3. IgA profiling.................................29
III. 3. 4. Common appearance in IgA, IgG and IgM
profiling.....................................31
III. 4. Significant variations of proteins among
2M_antibody, 12M_antibody and adult antibody
profiling proteome microarrays...................31
III. 4. 1. IgM profiling.................................32
III. 4. 2. IgG profiling.................................33
III. 4. 3. IgA profiling.................................34
III. 4. 4. Common appearance in IgA, IgG and IgM
profiling.....................................35
IV. DISCUSSION...........................................36
IV. 1. A rapid, reliable and high-throughput technology
to analyze infant and adult sera..................36
IV. 2. The mutual phenomena on each antibody profiling...37
IV. 3. Specific functionality in a specific antibody
profiling.........................................37
V. CONCLUSION............................................38
VI. REFERENCES...........................................39
FIGURES..................................................42
TABLES...................................................87
參考文獻 1. Houghton Mifflin Company, 2004. "Immunoglobulin M". The American Heritage Dictionary of the English Language, Fourth Edition. Accessed on 12 Oct. 2007
2. Junqueira, Luiz C.; Jose Carneiro. (2003). "Basic Histology". McGraw-Hill. ISBN 0-8385-0590-2.
3. Tusher, V. G., R. Tibshirani, et al.(2001). "Significance analysis of microarrays applied to the ionizing radiation response". PNAS 98 (9): 5116–5121.
4. Zang, S., R. Guo, et al. (2007). "Integration of statistical inference methods and a novel control measure to improve sensitivity and specificity of data analysis in expression profiling studies". Journal of Biomedical Informatics 40 (5): 552–560.
5. Chu, G., Narasimhan, B, Tibshirani, R, Tusher, V. "SAM "Significance Analysis of Microarrays" Users Guide and technical document.
6. Chen CS, Sullivan S, Anderson T, Tan AC, Alex PJ., Brant SR, Cuffari C, Bayless TM, Talor MV, Burek L, Wang H, Li R, Datta LW, Wu Y, Winslow RL, Zhu H, Li X. (2009). "Identification of novel serological biomarkers for inflammatory bowel disease using E. coli proteome chip". Molecular & Cellular Proteomics 8 (8): 1765–1776.
7. Jiawei Han, Micheline Kamber (2007). "Data Mining Concepts and Techniques". Morgan Kaufmann Publishers. ISBN 978-0-12-373905-6.
8. Neil C. Jones, Pavel A. Pevzner (2004). "An introduction to bioinformatics algorithms". MIT Press. ISBN 0-262-10106-8.
9. Brian S. Everitt, Sabine Landau, and Morven Leese (2001). "Cluster Analysis (Fourth edition.) ". London: Arnold. ISBN 0-340-76119-9.
10. Maere, S., Heymans, K. and Kuiper, M. (2005). "BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks". Bioinformatics 21 (16): 3448–3449.
11. Shannon, P. et al. (2003) "Cytoscape: a software environment for integrated models of biomolecular interaction networks." Genome Research. 13, 2498–2504.
12. Benjamini, Y. and Hochberg, Y. (1995). "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing". Journal of the Royal Statistical Society. Series B (Methodological) 57 (1): 289–300.
13. Benjamini, Y. and Yekutieli, D. (2001) "The control of the false discovery rate in multiple testing under dependency". The Annals of Statistics 29 (4): 1165–1188.
14. Richard A. Johnson, Miller. Irwin, Freund. John E. (2000). "Miller & Freund’s Probability and Statistics for Engineers sixth edition". Prentice Hall. ISBN 0-13-014158-5.
15. Chen CS, Korobkova E, Chen H, Zhu J, Jian X, et al. (2008). "A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli". Nature Methods 5 (1): 69–74.
16. Lisa M. Coussens and Zena Werb. (2001). "Inflammatory Cells and Cancer". Journal of Experimental Medicine 193 (6): F23-F26.
17. K.J. O’’Byrne and A.G. Dalgleish. (2001). "Chronic Immune Activation and Inflammation as the Cause of Malignancy". British Journal of Cancer 85 (4): 473–483.
18. Litman GW, Cannon JP, Dishaw LJ. (2005). "Reconstructing immune phylogeny: new perspectives". Nature Reviews. Immunology 5 (11): 866–879.
19. Fair WR, Couch J, Wehner N. (1976). "Prostatic antibacterial factor. Identity and significance". Urology 7 (2): 169–177.
20. Smith A.D. (1997). "Oxford dictionary of biochemistry and molecular biology". Oxford University Press. ISBN 0-19-854768-4.
21. Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters. (2002). "Molecular Biology of the Cell; Fourth Edition". New York and London: Garland Science. ISBN 0-8153-3218-1.
22. Medzhitov R. (2007). "Recognition of microorganisms and activation of the immune response". Nature 449 (7164): 819–826.
23. Matzinger P. (2002). "The danger model: a renewed sense of self". Science 296 (5566): 301–5.
24. Pancer Z, Cooper MD. (2006). "The evolution of adaptive immunity". Annual Review of Immunology 24 (1): 497–518.
25. Charles Janeway. (2001). "Immunobiology; Fifth Edition". Garland Publishing. ISBN 0-8153-3642-X.
26. Litman GW, Rast JP, Shamblott MJ, Haire RN, Hulst M, Roess W, Litman RT, Hinds-Frey KR, Zilch A, Amemiya CT. (1993). "Phylogenetic diversification of immunoglobulin genes and the antibody repertoire". Mol. Biol. Evol. 10 (1): 60–72.
27. Market E, Papavasiliou FN. (2003). "V(D)J recombination and the evolution of the adaptive immune system". PLoS Biol. 1 (1): 024–027.
28. Rhoades RA, Pflanzer RG. (2002). "Human Physiology; Fourth Edition". Thomson Learning. ISBN 0-534-42174-1.
29. Diaz M, Casali P. (2002). "Somatic immunoglobulin hypermutation". Curr Opin Immunol 14 (2): 235–240.
30. S Fagarasan and T Honjo. (2003). "Intestinal IgA Synthesis: Regulation of Front-line Body Defenses". Nat. Rev. Immunology 3 (1): 63–72.
31. P. Brandtzaeg, R. Pabst. (2004). "Let’’s go mucosal: communication on slippery ground". Trends Immunology 25 (11): 570–577.
32. AJ Macpherson and E Slack. (2007). "The functional interactions of commensal bacteria with intestinal secretory IgA.". Curr Opin Gastroenterol. 23 (6): 673–678.
33. Racine R, McLaughlin M, et al. (2011). "IgM production by bone marrow plasmablasts contributes to long-term protection against intracellular bacterial infection". The journal of immunology 186 (2): 1011–1021.
34. Crabbé PA, Nash DR, Bazin H, Eyssen H, Heremans JF. (1970). "Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice". Lab Invest 22(5): 448-457.
35. Pollard M, Sharon N. (1970). "Responses of the Peyer’’s Patches in Germ-Free Mice to Antigenic Stimulation". Infect Immun. 2(1): 96-100.
36. Shroff KE, Meslin K, Cebra JJ. (1995). "Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut". Infect Immun. 63(10): 3904-3913
37. Macpherson AJ, Uhr T. (2004). "Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria". Science 303(5664):1662-1665.
38. Lundell AC, Björnsson V, Ljung A, Ceder M, Johansen S, Lindhagen G, Törnhage CJ, Adlerberth I, Wold AE, Rudin A. (2012). "Infant B cell memory differentiation and early gut bacterial colonization". J Immunol. 188(9): 4315-4322.
39. The Gene Ontology Consortium. (2008). "The Gene Ontology project in 2008". Nucleic Acids Res. 36 (Database issue): D440–D443.
40. Chen CS, Zhu H. (2006). "Protein microarrays". BioTechniques 40 (4): 423–429.
41. Thao S, Chen CS, Zhu H, Escalante-Semerena JC. (2010). "Nepsilon-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity". PLoS One 5 (12): e15123.
42. Lin YY, Lu JY, et al. (2009). "Protein Acetylation Microarray Reveals NuA4 Controls Key Metabolic Target Regulating Gluconeogenesis". Cell 136 (6): 1073–1084.
指導教授 陳健生(Chien-Sheng Chen) 審核日期 2012-7-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare