博碩士論文 982206066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.145.34.51
姓名 郭冠廷(Kuan-Ting Kuo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 不同激發光螢光粉光學模型之分析
(The analysis of different blue light sources for YAG phosphor model)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 新型光電生化感測器之分析與研究★ 結合柱狀透鏡陣列之非成像車頭燈光型設計
★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法★ 特定色度背光模組零組件之光學特性評估
★ 電子紙增亮分析與模擬設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,為了探討不同波長之激發光搭配YAG 螢光粉封裝成白光LED 的光學特性,因此建立了不同激發光YAG 螢光粉光學模型,而我們利用蒙地卡羅 (Monte-Carlo) 光追跡法結合米氏散射(Mie Scatter) 原理來模擬光線在YAG 螢光粉內的散射行為,並藉由二次光追跡來得到吸收係數和轉換效率。由於藍光經過YAG螢光粉後會發生形變,所以引入β參數結合螢光粉吸收頻譜來修正藍光頻譜形變的情形,並利用線性疊加的方式還原其頻譜,最後藉由實際半球封裝白光LED來驗證光學模型的準確性。
摘要(英) In order to explore the property of white light LED, we build the phosphor model which is encapsulated with different LED wavelength. we use the Monte-Carlo ray tracing method with Mie scattering theory to simulate the scattering behavior in YAG phosphor, and obtain absorption coefficient and transfer efficiency by 2-nd ray tracing. Because the spectrum of blue light will distort by YAG phosphor, we introduced a coefficient β to compensate the distortion of blue light spectrum, and recover the original spectrum by superposition. At last, we verified the accuracy of model by experiment.
關鍵字(中) ★ 發光二極體
★ 螢光粉
★ 吸收係數
★ 轉換效率
★ YAG
關鍵字(英) ★ Phosphor
★ Absorption coefficient
★ Conversion efficiency
★ LED
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
圖索引 ix
表索引 xvi
第一章 緒論 1
1-1前言 1
1-2 LED發展背景 2
1-3研究動機與目的 7
1-4 論文大綱 9
第二章 基本理論 10
2-1前言 10
2-2 LED發光原理 10
2-3 螢光粉發光原理 13
2-4 激發頻譜和發射頻譜 16
2-5 CIE 色度系統 17
第三章 螢光粉光學模型之建立 20
3-1 前言 20
3-2 不同波長的吸收能力 21
3-3 散射模型 24
3-4 螢光粉的吸收參數 30
3-5螢光粉的轉換效率 47
第四章 螢光粉光學模型之驗證 52
4-1 前言 52
4-2藍光頻譜 β修正 52
4-3 黃光頻譜 60
4-4 線性疊加 62
4-5 螢光粉模型驗證 64
第五章 結論 81
參考文獻 83
中英文名詞對照表 89
參考文獻 參考文獻
[1]Zukauskas, M. S. Shur, and R. Caska, Introduction to solid-state lighting (John Wiley & Sons, New York, 2002).
[2]A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80, 234-237(2002).
[3]S. W. Brown, C. Santana, and G. P. Eppeldauer“Development of a tunable LED-based colorimetric source,” J. Res. Natl. Inst. Stand. Technol. 107, 363-371 (2002).
[4]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[5]J. Tsao, “Solid-state lighting: lamps, chips and materials for tomorrow,” IEEE Circuits Devices Mag. 20, 28-37 (2004).
[6]N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. 202, 60-62 (2005).
[7]S. Chhajed, Y. Xi, T. Gessmann, J. Q. Xi, J. M. Kim, and E. F. Schubert, “Junction temperature in light emitting diodes assessed by different methods,” Proc. SPIE 5739, 16-24 (2005).
[8]E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[9]M. Liu and B. Rong, “Evaluation of LED application in general lighting,” Opt. Eng. 46, 1-6 (2007).
[10]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3, 160-175 (2007).
[11]R. D. Dupuis and M. R. Krames, “History, development, and applications of high-brightness visible light-emitting diodes,” IEEE J. Lightwave Technol. 26, 1154-1171 (2008).
[12]http://3c.msn.com.tw/article/1101062947/1.
[13]http://www.semi.org/ch/node/29011.
[14]http://n.yam.com/cnyes/fn/201204/20120424113931.html.
[15]H. J. Round, “A note on carborundum,” Electrical Word 49, 309 (1907).
[16]G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chem. Phys. 33, 620 (1936).
[17]H. Welker, “On new semiconducting compounds (translated from German),” Zeitschrift für Naturforschung 7a, 744 (1952).
[18]H. Welker, “On new semiconducting compounds II (translated from German),” Zeitschrift für Naturforschung 8a, 248 (1953).
[19]N. J. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[20]C. P. Kuo, R. M. Fletcher, T. D. Ostenkowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[21]S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
[22]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[23]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[24]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69, 4056 (1996).
[25]S. Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers (Spinger, Berlin, 1997).
[26]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[27]http://www.ledinside.com.tw/nichia_led_perf_200902.
[28]http://www.ledinside.com.tw/cree_254lm_per_w_201204.
[29]孫慶成,螢光粉模型與LED 光色的控制,2010 LED 固態照明研討論文集,國立 中央大學,中壢市,中華民國九十七年。
[30]K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[31]J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
[32]Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
[33]T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[34]W. J. Park, Y. H. Song, and D. H. Yoon, “Synthesis and luminescent characteristics of Ca2-xSrxSiO4:Eu2+ as a potential green-emitting phosphor for near UV-white LED applications,” Mater. Sci. Eng. 173, 76-79 (2010).
[35]J. Yu, C. F. Guo, Z. Y. Ren, and J. T. Bai, “Photoluminescence of double-color-emitting phosphor Ca5(PO4)3Cl:Eu2+, Mn2+ for near-UV LED,” Opt. Laser Technol. 43, 762-766 (2011).
[36]R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T.Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor- converted white light emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
[37]C. C. Yang, C. M. Lin, Y. J. Chen, Y. T. Wu, and S. R. Chuang, “Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90, 123501 (2007).
[38]W. Chung, H. J. Yu, S. H. Park, B. H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162-166 (2011).
[39]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
[40]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[41]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska,“Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[42]R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980 (2006).
[43]B. Wu, X. Luo, H. Zheng, and S. Liu, “Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode,” Opt. Express 19, 24115-24121 (2011).
[44]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[45]B. Hou, H. B. Rao, and J. F. Li, “Methods of increasing luminous efficiency of phosphor-converted LED realized by conformal phosphor coating,” J. Display Technol. 5, 57-60 (2009).
[46]H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express 18, A201-A206 (2010).
[47]Y. Shuai, Y. He, N. T. Tran, and F. G. Shi , “Angular CCT uniformity of phosphor converted white LEDs: effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
[48]M. Aril, S. Weaver, C. Becker, M. Hsing, and A Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition 1, 611-619 (2003).
[49]N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Stat. Sol. 202, R60-R62 (2005).
[50]H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
[51]Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the optical properties of YAG:Ce phosphor,” Proc. SPIE 6337, 63370S (2006).
[52]C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008).
[53]Z. Liu, K. Wang, X. Luo, and S. Liu, “Realization of high spatial color uniformity for white light-emitting diodes by remote hemispherical YAG: Ce phosphor film,” Electronic Components and Technology Conference, 1703-1707 (2010).
[54]M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, and C. C. Sun, “Ring remote phosphor structure for phosphor-converted white LEDs,” IEEE Photon. Technol. Lett. 22, 574-576 (2010).
[55]R. Yu, S. Jin, S. Cen, and P. Liang, “Effect of the phosphor geometry on the luminous flux of phosphor-converted light-emitting diodes,” IEEE Photon. Technol. Lett. 22, 1765-1767 (2010).
[56]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[57]C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The impact of inhomogeneities in the phosphor distribution on the device performance of phosphor-converted high-power white LED light sources,” J. Lightw. Technol. 28, 3226-3232 (2010).
[58]J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” J. J. A. Physics 44, 649-651 (2005).
[59]Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552-554 (2011).
[60]Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation,” IEEE Trans. Compon. Packag. 33, 680-687(2010).
[61]Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of phosphor’s location for high-power light-emitting diodes,” Transactions On Device And Materials Reliability 9, 65-73(2009).
[62]Z. Liu, S. Liu, K. Wang, and X. Luo, “Effects of phosphor’’s thickness and concentration on performance of white LEDs,” International Conference on Electronic Packaging Technology & High Density Packaging 1, 1-6 (2008).
[63]Z. Liu, S. Liu, K. Wang, and X. Luo, “Analysis of factors affecting color distribution of white LEDs,” International Conference on Electronic Packaging Technology & High Density Packaging 1, 386-393 (2008).
[64]C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-colortemperature distribution of white LEDs from 2800K to 6500K,” Opt. Express 20, 6622-6630 (2012).
[65]何信穎,白光 LED 之YAG 螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
[66]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[67]R. Mueller-Mach, G. Mueller, M. R. Krames, and T. Trottier, “ High-power phosphor-converted light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
[68]林昀,電子學,一版,鼎茂圖書出版有限公司,台北市,中華民國九十五年。
[69]E. F. Schubert, Light-emitting diodes (2nd ed. Cambridge, New York, 2006).
[70]劉如熹,控制LED用螢光粉品質之要素,2012 LED固態照明研討會論文集,國立中央大學,中壢市,中華民國一百零一年。
[71]E. F. Schubert, Light emitting diodes (Cambridge, New York, 2003).
[72]劉如熹和王健源,白光發光二極體製作技術 ¬¬¬¬¬- 21世紀人類的新曙光,全華科技圖書公司,台北縣,中華民國九十四年。
[73]大田登,色彩工程學,二版,全華科技圖書公司,台北市,中華民國九十五年。
[74]G. Wyszecki and W. S. Stiles, Color Science: Concepts and methods quantitative data and formula (2nd ed. John Wiley & Sons, New York, 1982).
[75]J. Guild, “The colorimetric properties of the spectrum,” Philos. R. Soc. London 230, 149-187 (1931).
[76]Breault Research Organization, http://www.breault.com/.
[77]Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18, 9398-9412 (2010).
[78]J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[79]S. Fujita, S. Yoshiharaa, A. Sakamotoa, S. Yamamotoa, and S. Tanabeb, “YAG glass-ceramic phosphor for white LED (I):background and development,” Proc. of SPIE 5941, 1-7 (2005).
[80]D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[81]紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[82]D. L. MacAdam, Spectrophotometry in color measurement (Springer-Verlag, Germany, 1981).
指導教授 楊宗勳、孫慶成
(Tsung-Hsun Yang、Ching-Cherng Sun)
審核日期 2012-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明