博碩士論文 100226033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.216.60.85
姓名 徐寧(Ning Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙週期性晶格極化反轉鈮酸鋰電光模態轉換器調制之體積全像光參量振盪器之頻譜窄化機制探討
(Investigation of spectral narrowing mechanism in a volume Bragg grating optical parametric oscillator modulated by PPLN electro-optic polarization-mode converters)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 同時具有單縱模(Single Longitudinal Mode, SLM)及單橫模的雷射具有極窄頻、高強度、高準值性的光源輸出,可被廣泛應用於光譜學、太空遙測和光纖通訊。傳統欲達成單縱模輸出,可使用方法有短共振腔內置一個或數個共振腔(Intra-cavity etalons)作為篩頻元件或是利用Fox-Smith干涉儀的架構[0.1]以共振腔(etalon)選取單頻共振,另外又可由環型共振腔並置入光單通道如法拉第旋轉器(Faraday rotator),即共振腔內光波以行進波(traveling wave)而非駐波(standing wave)傳遞,藉以抑制同質性拓寬(homogeneous broadening)不可避免因為空間燒洞(spatial-hole burning)所產生的橫模,達到極窄頻單縱模雷射輸出。
上述方法雖可達成極窄頻單縱模輸出,卻不可避免存在如共振腔內元件過多造成較高的端面損耗或環型共振腔架構複雜且架設不易之問題。本論文實驗為以體積全像布拉格光柵(Volume Bragg Grating ,VBG) 取代光參量振盪器(Optical Parametric Oscillator,OPO)的介電質輸出耦合鏡(Dielectric output coupler / Mirror, DM),可窄化光參量振盪器訊號光之頻寬。在使用較低尖端功率雷射作泵浦光源下,光參量振盪器的增益曲線近似同質性拓寬,若使用電光模態轉換器(Electro-Optic Polarization Mode Converter,EO PMC)調制窄頻寬訊號光的偏振態使往返訊號光偏振態正交,取代傳統複雜元件和架構,以單一元件和線性共振腔達到極窄頻單縱模光參量振盪器。
本論文實驗比較光參量振盪器於駐波操作和電光偏振模態轉換器調制成行進波操作下訊號光之頻譜、模態以及脈寬上之變化。發現操作在行進波條件下,較低增益與相對較高增益頻譜半高寬都有一倍的窄化效果:相對低增益頻譜半高寬從駐波操作下的0.02奈米在行進波操作下窄化至0.01奈米(光譜儀解析極限),相對高增益頻譜半高寬從0.1奈米窄化至0.05奈米。另外,光參量振盪器的M2值透過電光偏振模態轉換器亦有濾波優化的效果,從駐波操作下的2.47至行進波操作下的1.25。
摘要(英) Single Longitudinal Mode (SLM) lasers have narrow linewidth, high degree of brightness and directionality properties, and they can be applied to many areas such as spectroscopy, remote sensing and fiber communic- ating. SLM can be achieve according to many traditional methods such as insert intra-cavity etalons in the short cavity, and constructing Fox-Smith interferometer oscillating single frequency with etalon. After that, we can use the ring cavity and Faraday rotator to let the electromagnetic waves become traveling waves instead of standing waves in the laser resonator to eliminate spatial-hole burning effect in homogeneous broadening mechanism to get rid of unwanted transverse modes and achieve SLM with narrow linewidth.
Although those methods mentioned above can achieve SLM, many problems such as high insertion loss and complicated alignment in the ring cavity still remain. This thesis demonstrates another way to attain the SLM: Volume Bragg Grating (VBG) is a linewidth narrowing element, and it can be used as the output coupler of Optical Parametric Oscillator’s (OPO’s) resonator to reduce the output linewidth of OPO signal. If the nonlinear gain medium is pumped by the relatively lower peak power laser in this case, the gain profile of OPO is similar to homogeneous broadening. Next, we employee two Electro-Optic Polarization Mode Convertors (EO PMCs) to modulate the polarization states of narrow linewidth forward and backward signal waves become orthogonal. Finally, the signal waves reach SLM in a compact manner with linear cavity and few elements compares with traditional setups.
We investigate and compare the OPO signals in their spectra, mode profiles and pulse durations with OPO signals operated at traveling wave mode and standing wave mode, which are controlled by EO PMCs. Under the traveling wave operation, the spectra linewidth (FWHM) of OPO signals were narrower both in the relatively lower gain regime (0.02nm to 0.01nm) and the relatively higher gain regime (0.1nm to 0.05nm) than under the standing wave operation. Meanwhile, the M2 of OPO was improved by two EO PMCs from 2.47 to 1.25.
關鍵字(中) ★ 電光偏振模態轉換器
★ 鈮酸鋰
★ 光參量振盪器
關鍵字(英) ★ EO PMC
★ OPO
★ LiNbO3
論文目次 第一章 緒論…………………………………… 1
1.1 前言……………………………………………………………… 1
1.2 雷射……………………………………………………………… 2
1.3 非線性光學……………………………………………………… 4
1.4 鈮酸鋰…………………………………………………………… 6
1.5 準相位匹配……………………………………………………… 11
1.6 單縱模雷射……………………………………………………… 12
1.7 非線性電光波長可調窄頻雷射………………………………… 17
1.8 研究動機………………………………………………………… 22
第二章 理論……………………………………24
2.1 準相位匹配…………………………………………………… 25
2.1.1 二階非線性混頻與相位匹配……………………………… 25
2.1.2 雙折射相位匹配…………………………………………… 27
2.1.3 準相位匹配………………………………………………… 34
2.2 電光偏振模態轉換器………………………………………… 38
2.2.1 電光效應…………………………………………………… 38
2.2.2 摺疊索爾克濾波器………………………………………… 41
2.3 光參量振盪器………………………………………………… 44
2.3.1 光參量產生………………………………………………… 44
2.3.2 光參量振盪器……………………………………………… 50
2.4 體積全像光柵………………………………………………… 53
2.5 Fabry-Perot干涉儀工作原理………………………………… 53
2.6 量測M2值的工作原理………………………………………… 58
第三章 製程……………………………………60
3.1 黃光微影製程………………………………………………… 60
3.2 極化反轉……………………………………………………… 62
3.3 蝕刻…………………………………………………………… 68
第四章 實驗量測與結果分析…………………70
4.1 實驗架構………………………………………………………… 70
4.2 雷射特性量測…………………………………………………… 75
4.2.1 雷射轉換效率……………………………………………… 75
4.2.2 共振腔模擬………………………………………………… 75
4.3 光參量振盪器特性量測………………………………………… 77
4.3.1 光參量振盪器波長調制……………………………………… 77
4.3.2 光參量振盪器工作於高增益及低增益條件………………… 78
4.4 行進波光參量振盪器與駐波光參量振盪器比較…………… 79
4.4.1 頻譜域-雷射頻寬量測……………………………………… 79
4.4.2 空間域-雷射模態圖與M2值量測…………………………… 85
4.4.3 時間域-雷射脈寬量測……………………………………… 88
第五章 結論與未來展望………………………90
5.1 結論…………………………………………………………… 90
5.2 未來展望……………………………………………………… 90
5.2.1 波長可調式單縱模光參量振盪器………………………… 91
5.2.2 連續波單縱模光參量振盪器……………………………… 92
參考文獻……………………………………………………………… 93
參考文獻 [0.1] Simon Hooker, Colin Webb, Laser Physics (Academic, 2010)
第一章 緒論
[1.1] Albert Einstein, “Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation) .”, Physika Zeitschrift, Vol. 18, 1917
[1.2] H. Kopfermann and R. Ladenburg, “Experimental Proof of ‘Negative Dispersion’ .”, Nature, Vol. 122, 1928
[1.3] E. M. Purcell and R. V. Pound, “A Nuclear Spin System at Negative
Temperature.”, Physical Review Letters. 81, 1951
[1.4] T. H. Maiman, “Stimulated Optical Radiation in Ruby.”, Nature,
187, 1960
[1.5] Simon Hooker, Colin Webb, Laser Physics (Academic, 2010)
[1.6] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
“Generation of Optical Harmonics.”, Physical Review Letters,
Vol.7, Number 4, 1961
[1.7] J. A. Giordmaine and R. C. Miller, Phys. Rev. Lett. 14, 973 (1965).
[1.8] Smith, R. G.; Geusic, J. E.; Levinstein, H. J.; Rubin, J. J.; Singh, S.; Van Uitert, L. G.; , "Continuous Optical Parametric Oscillation in Ba2NaNb5O15," Applied Physics Letters , vol.12, no.9, pp.308-310, May 1968
[1.9] S. E. Miller, “Integrated Optics : an introduction,”Bell. Syst. Tech J.48,p2059~2069(1969)
[1.10] Gregory David Miller, dissertation, Periodically Poled Lithium Niobate: modeling, fabrication, and nonlinear-optical performance, Department of Electrical Engineering, Standford University(1998)
[1.11] W.H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Nature. No.4 (1928)
[1.12] B. T. Matthias and J.P. Remeika, Ferroelectricity in the illmenite structure, Phys. Rev. 76 (1949) 1886.
[1.13] A. A. Ballman, Growth of Piezoelectric and ferroelectric materials by the Czochralski technique, J. American Ceram. Soc. 48 (1965) 112
[1.14] 胡榮章, dissertation, Growth and Characterization of MgO doped LiNbO3 Single Crystals, 國立成功大學(1991)
[1.15] Dieter H. Jundt, “Temperature-dependent Sellmeier Equation for the Index of Refraction, ne, in Congruent Lithium Niobate.”, Optics Letters, Vol. 22, No. 20, 1997
[1.16] A. Yariv and P. Yeh, Optical waves in Crystals, (Academic, 1983)
[1.17] N. Bloembergen, Nonlinear Optics, (Academic, 1965)
[1.18] J. A. Armstrong, “Interactions between light waves in a nonlinear dielectric”, Phy. Rev. 127 (6), 1918 (1962)
[1.19] Khanarian, G.; Norwood, R. A.; Haas, D.; Feuer, B.; Karim, D.; , "Phase‐matched second‐harmonic generation in a polymer waveguide," Applied Physics Letters , vol.57, no.10, pp.977-979, Sep 1990
[1.20] Yamada, M.; Nada, N.; Saitoh, M.; Watanabe, K.; , "First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation,"Applied Physics Letters , vol.62, no.5, pp.435-436, Feb 1993
[1.21] R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549, 1997.
[1.22] S. M. Jarrett and J. F. Young, “High-efficiency single-frequency cw ring dye laser”, OPTICS LETTERS, Vol. 4, No. 6, 1979
[1.23] Thomas. J. Kane and Robert L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser”, OPTICS LETTERS, Vol. 10, No. 2, 1985
[1.24] Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander Lawrence, E. Myers and Robert L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3”, OPTICS LETTERS, Vol. 21, No. 10, 1996
[1.25] Pinhas Blau, Senior Member, IEEE, Shaul Pearl, Shlomo Fastig, and Raphael Lavi, “Single-Mode Operation of a Mid-Infrared Optical Parametric Oscillator Using Volume-Bragg-Grating Cavity Mirrors”,IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 44. NO. 9, 2008
[1.26] 賴映佑, dissertation, Active linewidth control of an Optical Parametric Oscillator in a monolithically cascaded PPLN wavelength converter and APLN Electro-Optic Polarization Mode Converter, 國立中央大學(2010)
[1.27] J. W. Evans, “The Šolc birefringent filter, ”J. Opt. Soc. Amer., 48, p142(1958)
[1.28] J. W. Chang, Y. Y. Lai, W. K. Chang, N. Hsu, Q. H. Tseng, Yen-Hung Chen, R. Geiss, T. Pertsch, “Spectral Narrowing and Manipulation in Optical Parametric Oscillator Using APPLN Electro-optic Polarization-mode Converter,“ Oral paper, CLEO 2011
[1.29] 林昭弘, dissertation, Integrated Periodically and Aperiodically Poled Lithium Niobate (PPLN-APLN) Photonics and Laser Devices, 國立中央大學(2009)
[1.30] Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,“ Opt.Lett, 2011
第二章 理論
[2.1] Yen-Chieh Huang, Principles of Nonlinear Optics, (Course Reader, 2002)
[2.2] U. Strossner, A. Peters, J. Mlynek, and S. Schiller, J.-P. Meyn and R. Wallenstein, ”Single-frequency continuous-wave radiation from 0.77 to 1.73μm generated by a green-pumped optical oscillator with periodically poled LiTaO3”, OPTICS LETTERS, Vol. 24, No.22, 1999
[2.3] Orazio Svelto, “Passive optical resonator” in Principles of Lasers, (Academic, 1989)
[2.4] SALEH. TEICH, Fundamentals of photonics, (Academic, 2007)
[2.5] Simon Hooker, Colin Webb, Laser Physics (Academic, 2010)
[2.6] 詹偉平, dissertation, Study of external cavity VBG-feedback laser using semiconductor tapered amplifier as the gain medium, 國立中央大學(2010)
第三章 製程
[3.1] M. L. Bortz, dissertation, Standford, 1994
[3.2] Shintaro Miyazawa, “Ferroelectric Domain Inversion in Ti-diffused
LiNbO3 Optical Waveguide.”, Journal of Applied Physics, 50, 1979
[3.3] J. Webjorn, F. Laurell, G. Arvidsson, “Blue Light Generated by
Frequency Doubling of Laser Diode Light in a Lithium Niobate Channel
Waveguide.”, IEEE Photonics Technology Letters, 1, 1989
[3.4] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.Gupta, “Domain Inversion in Linbo3 Using Direct Electron-beamwriting.”,
Applied Physics Letters, 60, 1992
[3.5] Ito, H.; Takyu, C.; Inaba, H.; , "Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes," Electronics Letters , vol.27, no.14, pp.1221-1222, 4 July 1991
[3.6] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric Domain Reversal in LiNbO3 Crystals Using High-voltage Atomic Force
Microscopy”, Applied Physics Letters, 85, 2004
[3.7] Makan Mohageg, Dmitry V. Strekalov, Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko and Lute Maleki, “Calligraphic poling of Lithium Niobate” , Optics Express, Vol. 13, No. 9, 2005
[3.8] Makan Mohageg, Dmitry V. Strekalov, Anatoliy A. Savchenkov, Andrey B. Matsko, Vladimir S. Ilchenko and Lute Maleki, “Calligraphic Poling for WGM Resonator”, Pasadena, CA : Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2006.
[3.9] Duan Feng, Nai-Ben Ming, Jing-Fen Hong, Yong-Shun Yang,
Jin-Song Zhu, Zhen Yang, and Ye-Ning Wang, “Enhancement of
Second-Harmonic Generation in LiNbO3 Crystals with Periodic Laminar
Ferroelectric Domains.”, Applied Physics Letters, 37, 607, 1980
[3.9] Yen-Chieh Huang, “Other 2nd-order nonlinear frequency conversions” in Principles of Nonlinear Optics, (Course Reader, 2002)
[3.10] J. A. Armstrong, “Interactions between light waves in a nonlinear dielectric”, Phy. Rev. 127 (6), 1918 (1962)
第四章 實驗量測與結果分析
指導教授 陳彥宏(Yen -Hung Chen) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明