參考文獻 |
1. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
2. T. Wilson, and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).
3. T. Wilson, “Confocal Microscopy,” in Biomedical Photonics Handbook, T. Vo-Dinh, eds. (CRC Press, Boca Raton, 2003), Chapter 10.
4. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, New York, 1995).
5. P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84, 1421-1430 (2008).
6. M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138, 435-446 (2010).
7. T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.167-182.
8. T. Wilson, and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227-229 (1987).
9. J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.347-354.
10. E. Sanchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martinez-Corral, A. Boblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37, 1280-1282 (2012).
11. J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226-2235 (1994).
12. H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223, 26-32 (2006).
13. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46-52 (1996).
14. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
15. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Sources of contrast in confocal reflectance imaging,” Appl. Opt. 35, 3441-3446 (1996).
16. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749-2754 (1998).
17. M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216-223 (1997).
18. Y. Watanabe, and I. Yamaguchi, “Geometrical tomographic imaging of refractive indices through turbid media by a wavelength-scanning heterodyne interference confocal microscope,” Appl. Opt. 41, 2414-2419 (2002).
19. C. J. R. Sheppard, M. Roy, and M. D. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt. 43, 1493-1502 (2004).
20. H. W. Wang, J. A. Izatt, and M. D. Kulkarni, “Optical coherence microscopy,” in Handbook of Optical Coherence Tomography, B. E. Bouma, and G. J. Tearney, eds. (Marcel Dekker, New York, 2001), pp. 275-298.
21. L. K. Wong, M. J. Mandella, G. S. Kino, and T. D. Wang, “Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture,” Opt. Lett. 32, 1674-1676 (2007).
22. J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. M. Crawford, C. H. Contag, G. S. Kino, and T. D. Wang, “Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia,” J. Biomed., Opt. 11, 054019 (2006).
23. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13, 034020 (2008).
24. H. Ra, W. Piyawattanametha, E. Gonzalez, M. J. Mandella, G. S. Kino, O. Solgaard, D. Leake, R. L. Kaspar, A. Oro, and C. H. Contag, “In vivo imaging of human and mouse skin with a handheld dual-axis confocal fluorescence microscope,” Invest. Dermatol. 131, 1061-1066 (2011).
25. W. Piyawattanametha, “Dual axes confocal microendoscope,” in Advances in Bio-Imaging: From Physics to Signal Understanding Issues, N. Lomenie, D. Racoceanu, and A. Gouaillard eds. (Springer, Heidelberg, 2012), pp.113-156.
26. N. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express 16, 18764-18769 (2008).
27. C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16, 17031-17038 (2008).
28. W. Gong, K. Si, and C. J. R. Sheppard, “Divided-apeture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49, 752-757 (2010).
29. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154-157 (2011).
30. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
31. S. W. Hell, and E. H. K. Stelzer, “Lens aberrations in confocal fluorescence microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.347-354.
32. C. J. R. Sheppard, “Confocal imaging through weakly aberrating media,” Appl. Opt. 39, 6366-6368 (2000).
33. C. J. R. Sheppard, and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
34. C. J. R. Sheppard, “Aberrations in high aperture conventional and confocal imaging systems,” Appl. Opt. 27, 4782-4786 (1986).
35. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
36. A. Diaspro, F. Federici, and M. Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt. 41, 685-690 (2002).
37. C. J. R. Sheppard, and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34-38 (1991).
38. M. Kempe, and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919-1921 (1994).
39. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
40. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90-98 (1998).
41. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
42. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
43. S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, and H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt. 43, 2722-2729 (2004).
44. P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
45. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun. 259, 204-211 (2006).
46. C. J. R. Sheppard, and D. M. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific, Oxford, 1997), pp. 27-39.
47. I. Escobar, G. Saavedra, M. Martinez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A 23, 3150-3155 (2006).
48. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-246 (2000).
49. S. Mezouari, and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771-773 (2003).
50. I. Escobar, G. Saavedra, M. Martinez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-apeture optical scanning instruments,” J. Opt. Soc. Am. A 23, 3150-3155 (2006).
51. J. Ojeda-Castaneda, P. Andres, and A. Diaz, “Annular apodizers for low sensitivity to defocus and to spherical aberration,” Opt. Lett. 11, 487-489 (1986).
52. T. R. M. Sales, and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227-230 (1998).
53. Z. Ding, G. Wang, M. Gu, Z. Wang, and Z. Fan, “Superresolution with an apodization film in a confocal setup,” Appl. Opt. 36, 360-363 (1997).
54. G. S. Kino, and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775-3783 (1990).
55. M. Gu, and C. J. R. Sheppard, “Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy,” Appl. Opt. 33, 625-630 (1994).
56. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829-2842 (2007).
57. L. C. Peng, C. Chou, C. W. Lyu, and J. C. Hsieh, “Zeeman laser-scanning confocal microscopy in turbid media,” Opt. Lett. 26, 349-351 (2001).
58. C. Chou, L. C. Peng, Y. H. Chou, Y. H. Tang, C. Y. Han, and C. W. Lyu, “Polarized optical coherence imaging in turbid media by use of a Zeeman laser,” Opt. Lett. 25, 1517-1519 (2000).
59. H. F. Chang, “The principle, feature and applications of common-path heterodyne confocal microscope,” National Central University, PhD dissertation, September 2007.
60. Agilent Technologies, Laser and Optics User’s Manual (Agilent Technologies, 2002), Chap. 5.
61. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
62. J. S. Wu, C. Chou, C. H. Chang, L. P. Yu, L. D. Chou, H. F. Chang, H. F. Yau, and C. C. Lee, “Zeeman laser scanning confocal microscope and its ability on reduction of specimen-induced spherical aberration,” Opt. Express 18, 13136-13150 (2010).
63. S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953-1959 (1975).
64. D. M. Chambers, “Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations,” Opt. Express 1, 60-67 (1997).
65. D. Delautre, S. Breugnot, and V. Laude, “Measurement of the sensitivity of heterodyne detection to aberrations using a programmable liquid-crystal modulator,” Opt. Commun. 160, 61-65 (1999).
66. K. Tanaka, and N. Ohta, “Effects of tilt and offset of signal field on heterodyne efficiency,” Appl. Opt. 26, 627-632 (1987).
67. J. W. Goodman, Introduction to Fourier Optics, 2nd Ed. (McGraw-Hill, New York, 2002).
68. C. H. Chang, “Reducing the specimen-induced spherical aberration by polarized photon-pair confocal laser scanning microscope,” National Central University, Master dissertation, July 2007.
69. R. M. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).
70. M. Gu, C. J. R. Sheppard, and H. Zhou, “Optimization of axial resolution in confocal imaging using annular pupils,” Optik 93, 87-90 (1993).
71. C. J. R. Sheppard, and T. Wilson, “Effect of spherical aberration on the imaging properties of scanning optical microscopes,” Appl. Opt. 18, 1058-1063 (1979).
72. D. K. Hamilton, and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573-1577 (1982).
73. C. J. R. Sheppard, and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik 87, 129-132 (1991).
74. C. J. R. Sheppard, and M. Gu, “Edge-setting criterion in confocal microscopy,” Appl. Opt. 31, 4575-4577 (1992).
75. Y. Xie, and Y. Wu, “Elliptical polarization and nonorthogonality of stabilized Zeeman laser output,” Appl. Opt. 28, 2043-2046 (1989).
76. M. Born, and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, Cambridge, 2005), Chapter 10.
77. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Pre. Eng. 18, 161-163 (1996).
|