博碩士論文 93246018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.188.66.13
姓名 吳政雄(Jheng-Syong Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙頻率偏極化共焦雷射掃描顯微鏡的成像理論建立及其降低樣本引入球面像差能力之評估
(The Study of Image Formation Theory in Two-Frequency Polarized Confocal Laser Scanning Microscope and Its Ability on Reduction of Specimen-Induced Spherical Aberrations)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 雙頻雷射共光程外差干涉橢圓儀
★ 超晶格結構之硬膜研究★ 交錯傾斜微結構薄膜在深紫外光區之研究
★ 膜堆光學導納量測儀★ 紅外光學薄膜之研究
★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測★ 成對表面電漿波生物感測器之研究及其在生醫上的應用
★ 影像式外差干涉術之建立★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在傳統共焦顯微鏡中,樣本與環境間折射率的不匹配或樣本內的折射率變化皆會引入球面像差,而此球面像差會破壞共焦顯微鏡斷層影像的品質,尤其是對於生物樣本。本研究論文提出極化光子對共焦雷射掃描顯微鏡的成像理論,並且以實驗驗證此降低樣本引入球面像差的能力。極化光子對共焦雷射掃描顯微鏡使用日曼雷射為光源,其輸出一道線性極化光子對光束。由於線性極化光子對共路徑傳播與光學外差偵測的特性,極化光子對共焦雷射掃描顯微鏡具有降低樣本引入球面像差與提升軸向解析度的能力。對一個具有散射特性的樣本進行成像時,極化光子對共焦雷射掃描顯微鏡基於具有空間同調篩選、極化篩選及空間過濾篩選,亦能降低樣本的散射效應。極化光子對共焦雷射掃描顯微鏡的實驗已驗證其同時降低樣本引入球面像差與散射效應的能力。此外,實驗上我們比較與討論正交極化與平行極化光子對共焦雷射掃描顯微鏡的軸向反應曲線,對於引入弱球面像差情況時,平行極化光子對共焦雷射掃描顯微鏡具有較佳的軸向反應曲線;然而,對於引入強球面像差情況時,正交極化光子對共焦雷射掃描顯微鏡反而具有較佳的軸向反應曲線。因此,對於生物樣本,藉由選擇適合的極化態極化光子對共焦雷射掃描顯微鏡可以有較佳的軸向反應曲線。
摘要(英) The spherical aberration induced by refractive-index mismatch results in the degradation on the quality of sectioning images in conventional confocal laser scanning microscope (CLSM), especially for a biological specimen. In this research, we have derived the theory of image formation in a two-frequency polarized confocal laser scanning microscope (TFCLSM) and conducted experiments to verify the ability of reducing spherical aberration in TFCLSM. A Zeeman laser is used as the light source and produces the linearly polarized two-frequency laser beam. With the features of common-path propagation of LPPP and optical heterodyne detection, TFCLSM shows the ability of reducing the specimen-induced spherical aberration and improving the axial resolution (13%~23%) simultaneously. TFCLSM also reduce the scattering effect when imaging into a scattering specimen, based on the spatial coherence gating, polarization gating and spatial filtering gating. In experiments, the ability to reduce the specimen-induced spherical aberration and scattering effect simultaneously in TFCLSM was verified. In addition, we experimentally compare and discuss the axial responses of the orthogonal linearly polarized two-frequency confocal laser scanning microscope (O-TFCLSM) and the parallel linearly polarized two-frequency confocal laser scanning microscope (P-TFCLSM). The axial response of the P-TFCLSM showed better performance than that of the O-TFCLSM under weak spherical aberration conditions. However, the opposite was true under serious spherical aberration. These results imply that a pair of proper polarizations in TFCLSM can have a better axial response for a biological specimen.
關鍵字(中) ★ 偏極化
★ 光學同調
★ 雙頻率雷射
★ 光學外差干涉
★ 球面像差
★ 共焦顯微鏡
關鍵字(英) ★ optical heterodyne
★ spherical aberration
★ confocal microscope
★ polarization
★ coherence
★ two-frequency laser
論文目次 Abstract in Chinese……………………………………………………i
Abstract in English…………………………………………………ii
Contents…………………………………………………………………iv
List of Figures………………………………………………………vii
List of Tables…………………………………………………………xi
Abbreviation…………………………………………………………xii
List of Symbols………………………………………………………………xiv
1. Introduction…………………………………………………………1
1-1 Background and Limitation of Confocal Laser Scanning Microscope…1
1-2 Review of Works Regarding the Reduction of Specimen-Induced Spherical Aberration………………………………………12
1-2-1 Linear Correlation Scanning Microscope…………………12
1-2-2 Adaptive Optical Microscope………………………………15
1-2-3 Adjusting the Tube Length of the Objective……………17
1-2-4 Using an Oil-Immersion or Water-Immersion Objective.18
1-2-5 Using Pupil-plane Filters…………………………………19
1-3 Two-Frequency Polarized Confocal Laser Scanning Microscope...............................................21
2. Image Formation Theory…………………………………………25
2-1 Confocal Laser Scanning Microscope………………………25
2-2 Two-Frequency Polarized Confocal Laser Scanning Microscope.........29
3. Spherical Aberration Reduction in Two-Frequency Polarized Confocal Laser Scanning Microscope…………………33
3-1 Experimental Setup………………………………………………33
3-2 Axial Responses in the Presence of Spherical Aberration……………39
3-3 Common-Path Configuration……………………………………43
3-4 One-Dimensional Scan Profile of a Grating………………48
3-5 Images of Straight Edge………………………………………52
3-6 Two-Dimensional Images of a Resolution Target…………54
3-7 Axial Responses in the Presence of Spherical Aberration and Scattering…………………………………………………………57
3-8 Discussion and Summary…………………………………………60
4. Polarization in Two-Frequency Polarized Confocal Laser Scanning Microscope…………………………………………………64
4-1 Experimental Setups of the Orthogonal Linearly Polarized Two-Frequency Confocal Laser Scanning Microscope (O-TFCLSM) and the Parallel Linearly Polarized Two-Frequency Confocal Laser Scanning Microscope (P-TFCLSM)………………………………64
4-2 The Axial Responses of O-TFCLSM and P-TFCLSM…………66
4-3 Two-Dimensional Images of a Resolution Target…………71
4-4 Discussion and Summary………………………………………74
5. Conclusions and Future Works…………………………………77
5-1 Conclusions………………………………………………………77
5-2 Future Works………………………………………………………79
Bibliographies………………………………………………………81
Publication List………………………………………………………89
參考文獻 1. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
2. T. Wilson, and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).
3. T. Wilson, “Confocal Microscopy,” in Biomedical Photonics Handbook, T. Vo-Dinh, eds. (CRC Press, Boca Raton, 2003), Chapter 10.
4. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, New York, 1995).
5. P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance confocal microscopy for in vivo skin imaging,” Photochem. Photobiol. 84, 1421-1430 (2008).
6. M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138, 435-446 (2010).
7. T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.167-182.
8. T. Wilson, and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227-229 (1987).
9. J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.347-354.

10. E. Sanchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martinez-Corral, A. Boblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37, 1280-1282 (2012).
11. J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226-2235 (1994).
12. H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223, 26-32 (2006).
13. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46-52 (1996).
14. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590-592 (1994).
15. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Sources of contrast in confocal reflectance imaging,” Appl. Opt. 35, 3441-3446 (1996).
16. C. L. Smithpeter, A. K. Dunn, A. J. Welch, and R. Richards-Kortum, “Penetration depth limits of in vivo confocal reflectance imaging,” Appl. Opt. 37, 2749-2754 (1998).
17. M. Kempe, A. Z. Genack, W. Rudolph, and P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216-223 (1997).
18. Y. Watanabe, and I. Yamaguchi, “Geometrical tomographic imaging of refractive indices through turbid media by a wavelength-scanning heterodyne interference confocal microscope,” Appl. Opt. 41, 2414-2419 (2002).
19. C. J. R. Sheppard, M. Roy, and M. D. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt. 43, 1493-1502 (2004).

20. H. W. Wang, J. A. Izatt, and M. D. Kulkarni, “Optical coherence microscopy,” in Handbook of Optical Coherence Tomography, B. E. Bouma, and G. J. Tearney, eds. (Marcel Dekker, New York, 2001), pp. 275-298.
21. L. K. Wong, M. J. Mandella, G. S. Kino, and T. D. Wang, “Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture,” Opt. Lett. 32, 1674-1676 (2007).
22. J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. M. Crawford, C. H. Contag, G. S. Kino, and T. D. Wang, “Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia,” J. Biomed., Opt. 11, 054019 (2006).
23. J. T. C. Liu, M. J. Mandella, J. M. Crawford, C. H. Contag, T. D. Wang, and G. S. Kino, “Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture,” J. Biomed. Opt. 13, 034020 (2008).
24. H. Ra, W. Piyawattanametha, E. Gonzalez, M. J. Mandella, G. S. Kino, O. Solgaard, D. Leake, R. L. Kaspar, A. Oro, and C. H. Contag, “In vivo imaging of human and mouse skin with a handheld dual-axis confocal fluorescence microscope,” Invest. Dermatol. 131, 1061-1066 (2011).
25. W. Piyawattanametha, “Dual axes confocal microendoscope,” in Advances in Bio-Imaging: From Physics to Signal Understanding Issues, N. Lomenie, D. Racoceanu, and A. Gouaillard eds. (Springer, Heidelberg, 2012), pp.113-156.
26. N. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express 16, 18764-18769 (2008).
27. C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16, 17031-17038 (2008).
28. W. Gong, K. Si, and C. J. R. Sheppard, “Divided-apeture technique for fluorescence confocal microscopy through scattering media,” Appl. Opt. 49, 752-757 (2010).
29. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154-157 (2011).
30. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
31. S. W. Hell, and E. H. K. Stelzer, “Lens aberrations in confocal fluorescence microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds. (Plenum Press, New York, 1995), pp.347-354.
32. C. J. R. Sheppard, “Confocal imaging through weakly aberrating media,” Appl. Opt. 39, 6366-6368 (2000).
33. C. J. R. Sheppard, and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563-3568 (1991).
34. C. J. R. Sheppard, “Aberrations in high aperture conventional and confocal imaging systems,” Appl. Opt. 27, 4782-4786 (1986).
35. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33, 616-624 (1994).
36. A. Diaspro, F. Federici, and M. Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt. 41, 685-690 (2002).
37. C. J. R. Sheppard, and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34-38 (1991).
38. M. Kempe, and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19, 1919-1921 (1994).
39. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
40. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90-98 (1998).
41. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
42. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
43. S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, and H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt. 43, 2722-2729 (2004).
44. P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).
45. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun. 259, 204-211 (2006).
46. C. J. R. Sheppard, and D. M. Shotton, Confocal Laser Scanning Microscopy (BIOS Scientific, Oxford, 1997), pp. 27-39.
47. I. Escobar, G. Saavedra, M. Martinez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A 23, 3150-3155 (2006).
48. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245-246 (2000).
49. S. Mezouari, and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771-773 (2003).
50. I. Escobar, G. Saavedra, M. Martinez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-apeture optical scanning instruments,” J. Opt. Soc. Am. A 23, 3150-3155 (2006).
51. J. Ojeda-Castaneda, P. Andres, and A. Diaz, “Annular apodizers for low sensitivity to defocus and to spherical aberration,” Opt. Lett. 11, 487-489 (1986).
52. T. R. M. Sales, and G. M. Morris, “Axial superresolution with phase-only pupil filters,” Opt. Commun. 156, 227-230 (1998).
53. Z. Ding, G. Wang, M. Gu, Z. Wang, and Z. Fan, “Superresolution with an apodization film in a confocal setup,” Appl. Opt. 36, 360-363 (1997).
54. G. S. Kino, and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775-3783 (1990).
55. M. Gu, and C. J. R. Sheppard, “Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy,” Appl. Opt. 33, 625-630 (1994).
56. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829-2842 (2007).
57. L. C. Peng, C. Chou, C. W. Lyu, and J. C. Hsieh, “Zeeman laser-scanning confocal microscopy in turbid media,” Opt. Lett. 26, 349-351 (2001).
58. C. Chou, L. C. Peng, Y. H. Chou, Y. H. Tang, C. Y. Han, and C. W. Lyu, “Polarized optical coherence imaging in turbid media by use of a Zeeman laser,” Opt. Lett. 25, 1517-1519 (2000).
59. H. F. Chang, “The principle, feature and applications of common-path heterodyne confocal microscope,” National Central University, PhD dissertation, September 2007.
60. Agilent Technologies, Laser and Optics User’s Manual (Agilent Technologies, 2002), Chap. 5.
61. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241-243 (2006).
62. J. S. Wu, C. Chou, C. H. Chang, L. P. Yu, L. D. Chou, H. F. Chang, H. F. Yau, and C. C. Lee, “Zeeman laser scanning confocal microscope and its ability on reduction of specimen-induced spherical aberration,” Opt. Express 18, 13136-13150 (2010).
63. S. C. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953-1959 (1975).
64. D. M. Chambers, “Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations,” Opt. Express 1, 60-67 (1997).
65. D. Delautre, S. Breugnot, and V. Laude, “Measurement of the sensitivity of heterodyne detection to aberrations using a programmable liquid-crystal modulator,” Opt. Commun. 160, 61-65 (1999).
66. K. Tanaka, and N. Ohta, “Effects of tilt and offset of signal field on heterodyne efficiency,” Appl. Opt. 26, 627-632 (1987).
67. J. W. Goodman, Introduction to Fourier Optics, 2nd Ed. (McGraw-Hill, New York, 2002).
68. C. H. Chang, “Reducing the specimen-induced spherical aberration by polarized photon-pair confocal laser scanning microscope,” National Central University, Master dissertation, July 2007.
69. R. M. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).
70. M. Gu, C. J. R. Sheppard, and H. Zhou, “Optimization of axial resolution in confocal imaging using annular pupils,” Optik 93, 87-90 (1993).
71. C. J. R. Sheppard, and T. Wilson, “Effect of spherical aberration on the imaging properties of scanning optical microscopes,” Appl. Opt. 18, 1058-1063 (1979).
72. D. K. Hamilton, and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573-1577 (1982).
73. C. J. R. Sheppard, and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik 87, 129-132 (1991).
74. C. J. R. Sheppard, and M. Gu, “Edge-setting criterion in confocal microscopy,” Appl. Opt. 31, 4575-4577 (1992).
75. Y. Xie, and Y. Wu, “Elliptical polarization and nonorthogonality of stabilized Zeeman laser output,” Appl. Opt. 28, 2043-2046 (1989).
76. M. Born, and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, Cambridge, 2005), Chapter 10.
77. D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two-frequency laser,” Pre. Eng. 18, 161-163 (1996).
指導教授 周晟、李正中
(Chien Chou、Cheng-Chung Lee)
審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明