博碩士論文 992202034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.137.218.230
姓名 莊敏強(Min-Chiang Chuang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
(Local anodic oxidation of graphene on selectively doped patterned silicon template)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯是由碳原子所組成的二維平面系統,它的電阻率極低,電子遷移速率快,使石墨烯成為半導體工業取代矽晶圓的最佳材料之一。石墨烯為一零能隙的材料為取代閘極最需克服之問題,必須將石墨烯的能隙打開(gap opening)。產生能隙的方法之一為部分地氧化石墨烯。所以局部地氧化石墨烯對於未來的半導體發展更為重要。本實驗利用掃描探顯微術來局部氧化石墨稀並觀察石墨稀氧化的機制,我們發現氧化產生的結構有部分來自於石墨稀底下矽基板氧化矽的貢獻,利用改變矽基板上氧化層的厚度我們也釐清了氧化石墨稀和氧化矽的比例,也更進一步的了解氧化石墨稀和氧化矽產生的先後次序。經由以上實驗的啟發,我們試著改變矽基板的參雜來改變基板表面的功函數,石墨稀的功函數會隨著底下矽基板的功函數改變而導致不同的氧化行為,經由了解參雜對氧化石墨稀的影響,我們發展出經由氧化石墨稀微調能階的方法。
摘要(英) Graphene is a two dimensional system consists of carbon atom. It has low resistance and high electron mobility, and is considered as one of the potential materials to replace silico in semiconductor industry. One of the problem to be overcome in using graphene as a gate in semiconductor devices is the property of gapless energy spectrum. Several ways of gap opening are considered. One way to open the gap is partial oxidation of graphene. Therefore local oxidation of graphene is a key issue for further application in semiconductor. We use atomic force microscopy (AFM) with local anodic oxidation (LAO) to oxidize and observe the mechanism of LAO on graphene. We find that the oxidation height is contributed from underneath silicon oxide protrusion and surface graphene oxide (GO). By varying the buffer oxide layer thickness, we clarify the formation order of GO and silicon oxide. Inspired from above experiments, a concept of using doping difference in template for controlling the LAO is presented. This method may give us a way to fine tune the band gap of graphene.
關鍵字(中) ★ 陽極氧化
★ 掃描探針顯微鏡
★ 石墨稀
關鍵字(英) ★ anodic oxidation
★ graphene
★ AFM
論文目次 Table of Contents iv
List of Tables vi
List of Figures vii
Abstract x
Introduction 1
1 Background 4
1.1 Basic of graphene 4
1.1.1 Graphene history 5
1.1.2 Tight binding model 7
1.1.3 Graphene achievement 13
1.2 Local anodic oxidation 15
1.2.1 Cabrera-Mott model 17
1.3 Oxidation on AFM 20
1.3.1 Researches on LAO 20
1.3.2 LAO parameter 22
2 Experiment Method 24
2.1 Sample preparation 24
2.2 Scanning probe Microscopy 26
2.2.1 Scanning tunneling microscopy 26
2.2.2 Conclusion 30
2.2.3 Atomic force microscopy 30
2.3 Local anodic oxidation setup 40
2.4 Raman spectroscopy 41
iv2.4.1 Raman effect 41
2.4.2 Raman modes in graphene 42
3 Result and discussion 48
3.1 Raman result on GO 48
3.2 Observation of LAO on graphene 50
3.2.1 Bias dependence 50
3.2.2 The speed dependence 50
3.2.3 The oxide height effect 56
3.2.4 Doping effect 57
3.3 summary on observation 57
3.3.1 Bias and oxide layer thickness 57
3.3.2 Writing speed 60
3.3.3 Graphene with doped template 67
3.4 isolation graphene with GO 69
3.5 Discussion 72
4 Conclusion 73
Bibliography 75
參考文獻 [1] C. W. Chen et al., Oxygen sensors made by monolayer graphene under room
temperature, APPLIED PHYSICS LETTERS 99 (2011), 243502.
[2] Ik-Su Byun et al., Nanoscale lithography on monolayer graphene using hydro-
genation and oxidation, ACS Nano 8 (2011), 6417.
[3] Javad Rafiee et al., Wetting transparency of graphene, NATURE MATERIALS
11 (2012), 217.
[4] Jin Ok Hwang et al., Workfunction-tunable, n-doped reduced graphene transpar-
ent electrodes for high-performance polymer light-emitting diodes, ACS Nano 6
(2012), 159.
[5] Justice M. P. Alaboson et al., Conductive atomic force microscope nanopatterning
of epitaxial graphene on sic(0001) in ambient conditions, Advenced Materals 23
(2011), 2181.
[6] K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science
306 (2004), 666.
[7] Konstantin V. Emtsev et al., Towards wafer-size graphene layers by atmospheric
pressure graphitization of silicon carbide, NATURE MATERIALS 8 (2009), 203.
[8] K.S. Novoselov et al., Nanolithography and manipulation of graphene using an
atomic force microscope, Solid State Communications 147 (2008), 366.
7576
[9] Phaedon Avouris et al., Atomic force microscope tip-induced local oxidation of
silicon: kinetics, mechanism, and nanofabrication, APPLIED PHYSICS LET-
TERS 71 (1997), 285.
[10] R. K. Puddy et al., Atomic force microscope nanolithography of graphene: Cuts,
pseudocuts,and tip current measurements, APPLIED PHYSICS LETTERS 98
(2011), 133120.
[11] S. Masubuchi et al., Fabrication of graphene nanoribbon by local anodic oxidation
lithography using atomic force microscope, APPLIED PHYSICS LETTERS 94
(2009), 082107.
[12] Sukang Bae et al., Roll-to-roll production of 30-inch graphene ?lms for transpar-
ent electrodes, nature nanotechnology 5 (2010), 574.
[13] Wenjing Zhang et al., Opening an electrical band gap of bilayer graphene with
molecular doping, AscNano 9 (2011), 7517.
[14] Xinming Li et al., Graphene-on-silicon schottky junction solar cells, Advenced
Materals 22 (2010), 2743.
[15] Yu-Ming Lin et al., Wafer-scale graphene integrated circuit, Science 332 (2011),
1294.
[16] A. K. Geim, Graphene: Status and prospects, Science 324 (2009), 1530.
[17] A. K. GEIM and K. S. NOVOSELOV, The rise of graphene, nature materials 6
(2007), 183.
[18] Philip Kim, Electronic transport in graphene heterostructures, Annu. Rev. Con-
dens. Matter Phys 2 (2011), 101.
[19] et al. Lishan Weng, Atomic force microscope local oxidation nanolithography of
graphene, APPLIED PHYSICS LETTERS 93 (2008), 093107.[20] Cecilia Mattevi, A review of chemical vapour deposition of graphene on copper,
Journal of Materials Chemistry 21 (2011), 3324.
[21] K. S. Novoselov, Graphene: Materials in the flatland, REVIEWS OF MODERN
PHYSICS 8 (2011), 837.
[22] Frank schwierz, graphene transistors, nature nanotechnology 5 (2010), 487.
[23] P. R. Wallace, The band theory of graphite, Physical Review Letter 71 (1947),
622.
指導教授 溫偉源(Wei Yen Woon) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明