博碩士論文 992202029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.15.26.116
姓名 張宸銘(Chen-Ming Chang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 吸附在一帶正電脂膜平面上之DNA分子形態與動力學
(Structure and Dynamics of DNA Adsorbed on a Supported Cationic Lipid Membrane)
相關論文
★ 長DNA的Janus粒子★ 黏彈性流體於剪流場下的微觀行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,作者利用螢光顯微技術,直接觀察單一DNA分子吸附在一帶正電的脂膜平面上之形態改變。
以螢光顯微鏡進行觀察,DNA分子剛吸附在脂膜上時呈現近似圓形的形狀,而隨著時間演進,DNA分子在脂膜上的大小及其形態之不對稱性會逐漸增加。透過使用不同帶電量的脂膜,我們發現,雖然單一DNA分子在吸附過程中的形態改變具有很大的變異性,但是,這些DNA分子的平均大小隨著時間演進的增長,在不同帶電量的脂膜上,皆可以運用一個指數函數予以描述。此指數函數顯示了DNA分子在吸附過程中形態改變的主要時間尺度:即DNA分子在帶電量較高的脂膜上改變形態所需的時間較長。
藉由進一步觀察單一DNA分子的吸附過程,我們發現DNA分子的形態改變,與脂膜的帶電量有關:在帶電量較高的脂膜上的DNA分子是藉由許多不對稱的「突出」(extrusions) 來擴張;但在帶電量較低的脂膜上的擴張形式則類似一逐漸擴大的圓盤。此一差異顯示了DNA分子與脂膜間複雜的交互作用。此外,藉由追蹤DNA分子在吸附過程中的質心位置,我們亦發現 DNA 分子的方均位移(mean square displacement)亦可作為形態改變的指標。
摘要(英) Relaxation of the chain-like DNA molecules upon adsorption on a supported cationic lipid membrane is time-resolved by direct imaging. Following the stochastic landing onto the membrane at a nearly spherical initial state, these DNA coils gradually relax and expand their apparent size in a highly anisotropic fashion. By using membranes with different charge densities, we show that the time evolution of the ensemble-averaged apparent size of the DNA molecules can be characterized by a generic exponential function despite significant variation between individual events. The exponential fitting also determines the primary time scale in the relaxation process, which is faster for DNA adsorbed on membranes with lower charge density. Examination on the conformational change of single DNA molecules on different membranes reveals non-trivial interaction between the adsorbed DNA molecule and the host membrane, with DNA relaxing through more anisotropic extrusions on membranes with higher charge density. The ensemble-averaged square displacement of the center-of-mass of the DNA molecules, which are found to be rescaled by the primary time scale, can be another indicator of the relaxation process.
關鍵字(中) ★ 吸附
★ 巨分子
★ 顯微技術
★ 單分子
★ 螢光
★ 細胞膜
★ 生物物理
★ 表面改質
★ 介面
★ 動力學
★ 結構
★ 脂膜
★ 高分子
★ 去氧核醣核酸
關鍵字(英) ★ polymer
★ DNA
★ adsorption
★ biomolecule
★ plasma membrane
★ cell membrane
★ lipid membrane
★ interface
★ dynamics
★ structure
★ surface modification
★ biophysics
★ single molecule
★ flurorescence microscopy
論文目次 Contents
1 Introduction 1
2 Background 4
3 Materials and Methods 9
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Image Analyses of Recorded Images of λ -DNA Molecules . . . . . . . . . . 11
4 Characterization of λ -DNA Molecules and Supported Cationic Lipid
Membranes 14
4.1 Apparent Size of λ -DNA Molecules in Bulk Solution . . . . . . . . . . . . . 14
4.2 Characterization of the Supported Cationic Lipid Membranes . . . . . . . 15
4.2.1 Spatial-Temporal Fluctuation of the Lipid Molecules in a Supported Cationic Lipid Membrane . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Lateral Mobility of the Lipid Molecules within a Supported Cationic Lipid Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Results 21
5.1 Redistribution of the Monomer Density at the Early Stage of Relaxation . 21
5.2 Conformational Change of Single Molecules during Relaxation . . . . . . . 25
5.3 Statistics of the Relaxation of Apparent Size and Shape Anisotropy . . . . 31
5.3.1 Conformational Change of Indivdual Molecules versus Their Ensemble Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Time Evolution of the Ensemble-Averaged Apparent Size and Shape Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Time Evolution of the Statistical Distributions of Apparent Size and Shape Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Displacement of the Center of Mass of Adsorbing DNA Molecules . . . . . 38
6 Discussion 41
7 Conclusion and Outlook 44
Bibliography 46
參考文獻 Bibliography
[1] A. Xie and S. Granick, “Phospholipid membranes as substrates for polymer adsorp-tion,” NATURE MATERIALS, vol. 1, pp. 129–133, OCT 2002.
[2] C. Safinya, “Structures of lipid-DNA complexes: supramolecular assembly and gene delivery,” CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 11, pp. 440–448, AUG 2001.
[3] K. Ewert, A. Ahmad, H. Evans, and C. Safinya, “Cationic lipid-DNA complexes for non-viral gene therapy: relating supramolecular structures to cellular pathways,” EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 5, pp. 33–53, JAN 2005
[4] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. Oxford University Press, 1986.
[5] P.-G. de Gennes, Scaling Concepts in Polymer Physcis. Cornell University Press, 1979.
[6] T. Odijk, “On the statistics and dynamics of confined or entangled stiff polymers,” Macromolecules, vol. 16, pp. 1340–1344, 1983.
[7] R. R. Netz and D. Andelman, “Neutral and charged polymers at interfaces,” Physics Letters, vol. 380, pp. 1–95, 2003.
[8] S. May, D. Harries and A. Ben-Shaul, “Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes,” Biophysical Journal, vol. 79, pp. 1747–1760, 2000.
[9] S. Sukhishvili, Y. Chen, J. Muller, E. Gratton, K. Schweizer, and S. Granick, “Materials science - Diffusion of a polymer ‘pancake’,” NATURE, vol. 406, p. 146, JUL 13 2000.
[10] S. A. Sukhishvili, Y. Chen, J. D. M‥uller, E. Gratton, K. S. Schweizer, and S. Granick, “Surface diffusion of poly(ethylene glycol),” Macromolecules, vol. 35, no. 5, pp. 1776–1784, 2002.
[11] S. Kang, M. Shortreed, and E. Yeung, “Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces,” ANALYTICAL CHEMISTRY, vol. 73, pp. 1091–1099, MAR 15 2001.
[12] J. Kumaki, T. Kawauchi, and E. Yashima, ““Reptational” Movements of Single Synthetic Polymer Chains on Substrate Observed by in-Situ Atomic Force Microscopy,” Macromolecules, vol. 39, no. 3, pp. 1209–1215, 2006
[13] P.-K. Lin, C.-C. Fu, Y.-L. Chen, Y.-R. Chen, P.-K. Wei, C. H. Kuan, and W. S. Fann, “Static conformation and dynamics of single DNA molecules confined in nanoslits,” Phys. Rev. E, vol. 76, p. 011806, Jul 2007.
[14] D. J. Bonthuis, C. Meyer, D. Stein, and C. Dekker, “Conformation and Dynamics of DNA Confined in Slitlike Nanofluidic Channels,” Phys. Rev. Lett., vol. 101, p. 108303, Sep 2008.
[15] Wong, Janet S. S. and Hong, Liang and Bae, Sung Chul and Granick, Steve, “Polymer surface diffusion in the dilute limit,” Macromolecules, vol. 44, no. 8, pp. 3073–3076, 2011.
[16] T. G. Desai, P. Keblinski, S. K. Kumar, and S. Granick, “Modeling Diffusion of Adsorbed Polymer with Explicit Solvent,” Phys. Rev. Lett., vol. 98, p. 218301, May 2007.
[17] H.-J. Qian, L.-J. Chen, Z.-Y. Lu, and Z.-S. Li, “Surface Diffusion Dynamics of a Single Polymer Chain in Dilute Solution,” Phys. Rev. Lett., vol. 99, p. 068301, Aug 2007.
[18] D. Mukherji, G. Bartels, and M. H. M‥user, “Scaling Laws of Single Polymer Dynamics near Attractive Surfaces,” Phys. Rev. Lett., vol. 100, p. 068301, Feb 2008.
[19] C. Tribet and F. Vial, “Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes,” SOFT MATTER, vol. 4, no. 1, pp. 68–81, 2008.
[20] L. Zhang and S. Granick, “Slaved diffusion in phospholipid bilayers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9118–9121, 2005.
[21] V. Kahl, M. Hennig, B. Maier, and J. O. Raedler, “Conformational dynamics of DNA-electrophoresis on cationic membranes,” ELECTROPHORESIS, vol. 30, pp. 1276–1281, APR 2009.
[22] T. Perkins, Quake, D. Smith, and S. Chu, “Relaxation of a single dna molecule observed by optical microscopy,” Science, vol. 264, no. 5160, pp. 822–826, 1994.
[23] T. Perkins, D. Smith, and S. Chu, “Direct observation of tube-like motion of a single polymer chain,” Science, vol. 264, no. 5160, pp. 819–822, 1994.
[24] B. Maier and J. O. R‥adler, “Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions,” Phys. Rev. Lett., vol. 82, pp. 1911–1914, Mar 1999.
[25] B. Maier and J. O. R‥adler, “DNA on Fluid Membranes: A Model Polymer in Two Dimensions,” Macromolecules, vol. 33, no. 19, pp. 7185–7194, 2000.
[26] M. B. Hochrein, J. A. Leierseder, L. Golubovi’c, and J. O. R‥adler, “DNA Localization and Stretching on Periodically Microstructured Lipid Membranes,” Phys. Rev. Lett., vol. 96, p. 038103, Jan 2006.
[27] M. B. Hochrein, J. A. Leierseder, L. Golubovi’c, and J. O. R‥adler, “DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching,” Phys. Rev. E, vol. 75, p. 021901, Feb 2007.
[28] C. Herold, P. Schwille, and E. P. Petrov, “DNA Condensation at Freestanding Cationic Lipid Bilayers,” Phys. Rev. Lett., vol. 104, p. 148102, Apr 2010.
[29] D. J. Olson, J. M. Johnson, P. D. Patel, E. S. G. Shaqfeh, S. G. Boxer, and G. G. Fuller, “Electrophoresis of DNA Adsorbed to a Cationic Supported Bilayer,” Langmuir, vol. 17, no. 23, pp. 7396–7401, 2001.
[30] P. Nelson, Biological Physics: Energy, Information, Life. W. H. Freeman, 2004.
[31] C. Loverdo, O. B’enichou, R. Voituriez, A. Biebricher, I. Bonnet, and P. Desbiolles, “Quantifying Hopping and Jumping in Facilitated Diffusion of DNA-Binding Proteins,” Phys. Rev. Lett., vol. 102, p. 188101, May 2009.
[32] P. G. de Gennes, “Molecular individualism,” Science, vol. 276, no. 5321, pp. 1999–2000, 1997.
[33] D. E. Smith, T. T. Perkins, and S. Chu, “Dynamical scaling of dna diffusion coefficients,” Macromolecules, vol. 29, no. 4, pp. 1372–1373, 1996.
[34] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophysics
Journal, vol. 16, pp. 1055–1069, 1976.
[35] C. Scomparin, S. Lecuyer, M. Ferreira, T. Charitat, and B. Tinland, “Diffusion in supported lipid bilayers: Influence of substrate and preparation technique on the internal dynamics,” EUROPEAN PHYSICAL JOURNAL E, vol. 28, pp. 211–220, FEB 2009.
[36] B. Plochberger, T. Stockner, S. Chiantia, M. Brameshuber, J. Weghuber, A. Hermetter, P. Schwille, and G. J. Schutz, “Cholesterol slows down the lateral mobility of an oxidized phospholipid in a supported lipid bilayer,” Langmuir, vol. 26, no. 22, pp. 17322–17329, 2010.
[37] A. Benda, M. Benes, V. Marecek, A. Lhotsky, W. T. Hermens, and M. Hof, “How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy,” Langmuir, vol. 19, no. 10, pp. 4120–4126, 2003.
[38] W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, “Statics and Dynamics of Single DNA Molecules Confined in Nanochannels,” Phys. Rev. Lett., vol. 94, p. 196101, May 2005.
指導教授 阮文滔(Wen-Tau Juan) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明