博碩士論文 992205024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.145.115.139
姓名 翁金龍(Jin-long Wong)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 聯合模型之參數估計─軟體MATLAB套件JointModel與軟體R套件JM之比較
(Parameters Estimation of Joint Model─Comparison between the JointModel package of MATLAB and the JM package of R)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生物醫學研究的過程中,經常收集到與時間有關的長期追蹤共變數,若將存活資訊與長期追蹤資料分開進行分析,可能會造成不當的推論。聯合模型將長期追蹤資料與存活資訊同時納入分析,使得估計量具有一致性(consistency)、有效性(efficiency)以及漸進常態(asymptotic normality)的良好性質。Cox聯合模型是最為廣泛使用的,當資料不符合Cox比例風險假設時,則以AFT聯合模型(the joint accelerated failure time model)當作替代。在參數的估計方面,結合長期追蹤資料與存活資訊以建立聯合概似函數,使用EM演算法(expectation-maximumalgorithm)做參數之估計。隨著聯合模型發展,已有許多軟體可以直接進行聯合模型分析:軟體R發展了套件:JM(2008)、Tseng & Yang (manuscript)提供了軟體MATLAB的套件:JointModel,此兩個軟體套件在參數估計時,所使用的方法略有差異,我們將以模擬的方式,對兩者進行比較。最後。藉由地中海果蠅資料進行實例估計。
摘要(英) In clinical research studies, the longitudinal data which pays much attention in recent decade collects the observed event time of interest, called failure time or survival time, along with longitudinal covariates. These outcomes are often separately analyzed and lead us to make biased inferences. Thus, a joint modeling approach is necessarily used to analysis these two parts simultaneously. The estimators obtained from joint model have nice properties, such as consistency, efficiency, and asymptotic normality. The joint Cox model is a popular approach for analyzing survival data, and the joint accelerated failure time model is an alternative approach when the Cox proportional hazard assumption fails. In the part of parameter estimation, we link the longitudinal data and event time, and use the expectation-maximum algorithm to search for the maximum likelihood estimates. There are a code, JM, proposed in the R environment (2010), and a program package of MATLAB, JointModel, proposed by Tseng and Yang (2012 manuscript). We will compare JM and JointModel by simulation studies and apply both packages to analyze the Mediterranean fruit fly data.
關鍵字(中) ★ 聯合模型
★ 長期追蹤資料
★ EM演算法
★ JM
★ JointModel
關鍵字(英) ★ JointModel
★ EM algorithm
★ JM
★ Joint Model
★ Longitudinal data
論文目次 摘 要..............................................I
英文摘要.............................................II
目 錄................................ ..........III
表 目 錄.................................. ...........V
第一章 緒論..........................................1
1-1 研究動機與背景....................................1
1-2 研究目的..........................................5
第二章 統計方法......................................7
2-1 符號定義..........................................7
2-2 長期追蹤資料模型..................................8
2-3 Cox比例風險模型..................................10
2-4加速失敗時間模型(AFT模型).........................11
2-5 參數估計.........................................12
第三章 軟體R之套件JM與軟體MATLAB之套件JointModel.....20
3-1 軟體R之套件JM....................................20
3-2 軟體MATLAB之套件JointModel...........................................23
第四章 統計模擬......................................27
4-1 Cox聯合模型模擬..................................27
4-2 AFT聯合模型模擬..................................32
第五章 實例分析......................................39
5-1 Cox聯合模型實例分析..............................39
5-2 AFT聯合模型實例分析..............................41
第六章 結論與討論....................................43
參考文獻.............................................45
參考文獻 Brown ER, Ibrahim JG, DeGruttola V (2005). “A Flexible B-spline Model for Multiple Longitudinal Biomarkers and Survival.” Biometrics, 61, 64-73.
Cox DR (1972). “Regression Models and Life Tables (with discussion).” Journal of the Royal Statistical Society B, 34, 187-220.
Cox DR, Oakes D (1984). “Analysis of Survival Data.” London: Chapman and Hall.
Ding J, Wang JL (2008). “Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data.” Biometrics, 64, 546-556.
Dimitris R (2010). “JM: An R Package for the Joint Modeling of Longitudinal and Time-to-Event Data.” Journal of Statistical of Software.
Follmann D, Wu M (1995). ”An Approximate Generalized Linear Model with Random Effects for Informative Missing Data.” Biometrics, 51, 151-168.
Guo X, Carlin B (2004). “Separate and Joint Modeling of Longitudinal and Event Time Data using Standard Computer Packages.” The American Statistician, 58, 16-24.
Hsieh FS, Tseng YK, Wang JL (2006). “Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited.” Biometrics, 62, 1037-1043.
Henderson R, Diggle P, Dobson A (2000). “Joint Modeling of Longitudinal Measurements and Event Time Data.” Biostatistics, 1, 465-480.
Lange K (2004). Optimization. Springer-Verlag, New York.
R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
Robins J, Tsiatis AA (1992). “Semiparametric Estimation of an Accelerated Failure Time Model with Time Dependent Covariates.” Biometrika, 79, 311-319.
Rizopoulos D, Verbeke G, Lesaffre E (2009), “Fully Exponential Laplace Approximations for the Joint Modeling of Survival and Longitudinal Data.” Journal of the Royal Statistical Society B, 71, 637-654.
Rizopoulos D, Verbeke G, Molenberghs G (2008), “Shared Parameter Models under Random Effects Misspecification.” Biometrika, 95, 63-74.
Song X, Davidian M, Tsiatis A (2002). “A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data.” Biometrics, 58, 742-753
Tseng YK, Hsieh FS, Wang JL (2005). “Joint Modeling of Accelerated Failure Time and Longitudinal Data.” Biometrika, 92, 587-603.
Tseng YK, Yang YF. “A MATLAB Package for Longitudinal and Survival data with Cox and AFT Models.” Manuscript.
Tsiatis AA, Davidian M (2004). “Joint Modeling of Longitudinal and Time-to-Event Data: an overview.” Statistica Sinica, 14, 809-834.
Wulfsohn MS, Tsiatis AA (1997). “A Joint Model for Survival and Longitudinal Data Measured with Error.” Biometrics, 53, 330-339.
Yao F, Muller HG, Wang JL (2005). “Functional Data Analysis for Sparse Longitudinal Data.” Journal of the American Statistical Association, 100, 577-590.
Yu M, Law NJ, Taylor JMG, Sandler HM (2004). “Joint Longitudinal-Survival Cure Models and their Application to Prostate Cancer.” Statistica Sinica, 14, 835-862.
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2012-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明