博碩士論文 995203052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.224.214.215
姓名 葉寰融(Huan-Jung Yeh)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法
(Channel Equalization and Resource Allocation for LTE Uplink SC-FDMA Systems in Mobile Radio Channels)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems
★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分
★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統
★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬
★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬
★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬
★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬★ 波束成形與資源分配於無線充電蜂巢式網路之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,我們對於移動無線通訊中的傳輸量日益漸增。單載波分頻存取技術(SC-FDMA)由於它的傳輸功率效率可以有效的降低峰值平均功率比(PAPR)。本質上來說,單載波分頻存取(SC-FDMA)系統的傳輸架構類似於正交分頻多工存(OFDMA)系統,除了單載波分頻多工為在正交分頻多工系統前加上離散傅立葉轉換前置編碼的系統。因此,單載波分頻存取適用於上鏈多重存取技術,尤其對於下世代的無線通訊系統中電池的壽命是很重要的一環。在3GPP 通訊,長程演進(LTE)規格已將單載波分頻多重存取制定成下一代行動通訊系統上鏈傳輸之多重存取技術。
在本論文中我們提出兩種最小均方誤差(MMSE)等化器對於在長程演進上鏈單載波分頻多工系統都普勒效應(Doppler effect)所產生之子載波間干擾(ICI)去做補償。其中一種為多用戶最小均方誤差等化器(MU MMSE equalizer),另一種為單一用戶最小均方誤差等化器(SU MMSE equalizer)。雖然多用戶最小均方誤差等化器可以達到較好的系統效能,但相對它需要更高的計算複雜度。相反的,單一用戶最小均方誤差等化器儘管在位元錯誤率會較差,但由於它利用子載波間干擾矩陣(ICI matrix)之帶限(band-limited)架構有效的降低計算複雜度。除此之外,我們提出一子載波間干擾消除與單一用戶最小均方誤差等化器結合並利用迭代(iterative)的方式,更進一步增進了位元錯誤率之效能。模擬結果也顯示出我們所提出方法可以有效的改善系統效能。在長程演進上鏈單載波分頻多工系統中,使用者之間的資源分配在移動的環境下會對位元錯誤率之效能造成影響。我們提出一個新的方法利用上層(upper-layer)的區塊資源分配(chunk resource allocation)有效的減緩子載波間干擾的影響。首先,我們根據使用者的子載波映射矩陣(subcarrier mapping matrices)去分析位元錯誤率,並利用我們所分析的結果去建構出一凸最佳化問題(convex optimization problem)去使得位元錯誤率最小化,並且找出最佳的資源分配矩陣藉由一整數的條件放寬。接著從最佳化問題中的結果提出兩種資源分配之演算法,一種為公平資源分配(Fair resource allocation),另一種為激進資源分配 (Aggressive resource allocation)。而最後我們模擬結果可以看出,我們將適當的子載波分配給不同使用者,並利用我們所提出的演算法有效的克服了子載波間干擾的產生以及增進了元錯誤率之效能。
摘要(英) The demand for high data rate wireless multimedia applications has been significantly increasing in mobile communication. Single-carrier frequency-division multiple access (SC-FDMA) is a promising and power-efficiency technique which allows for lower peak-to-average power ratio(PAPR). Essentially, the SC-FDMA system has a similar transmitter structure to the orthogonal frequency division multiplexing access (OFDMA) systems except that the information-bearing data symbols are pre-coded in frequency domain via a discrete Fourier transform (DFT) operation. Hence,it is suitable for uplink multiple access, especially when the issue of battery life represents a key concern in the next-generation wireless communication systems. In Third-Generation Partnership Project (3GPP) community, the SC-FDMA has been selected as the multiple access scheme for uplink transmission in the long-term evolution (LTE) specifications.
In this thesis, we investigate two kinds of minimum mean square error (MMSE)-based equalizers to compensate for the inter-carrier interference (ICI), caused by the Doppler effect, in LTE uplink SC-FDMA systems. One is the multi-user (MU)-MMSE equalizer and the other is called single-user(SU)-MMSE equalizer. The MU-MMSE equalizer can achieve better performance, whereas it has higher computational complexity. Instead, the SU-MMSE equalizer applies the band-limited structure of the ICI matrix to effectively reduce the computation complexity although it might suffer from a slight performance degradation on bit error rate (BER). Besides, we also develop an iterative receiver by incorporating the ICI cancellation scheme into the SU-MMSE equalization scheme to enhance the BER performance. Simulation results show that the proposed scheme can significantly improve the system performance.
In LTE uplink SC-FDMA system, the resource allocation among users will affect the BER performance in mobile radio environments. We introduce a novel idea to relieve the ICI effect from the upper-layer chunk resource allocation. First, we analyze the BER performance in terms of the users’
subcarrier mapping matrices, and formulate a convex optimization problem to minimize the BER by optimizing the resource allocation matrices through the integer constraint relaxation. Two resource allocation algorithms are then proposed to quantize the optimization results from the viewpoints of fair subcarrier allocation and aggressive subcarrier allocation. Simulation results demonstrate that with appropriate resource allocation among users, the proposed algorithms can effectively avoid severe ICI
from other users and thereby significantly improve the BER performance.
關鍵字(中) ★ 資源分配
★ 等化器
★ 第四代行動通訊
關鍵字(英) ★ LTE
★ SC-FDMA
★ resource allocation
★ ICI
★ Equalizer
論文目次 摘要 I
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1研究動機與背景 1
1.2文獻探討 2
1.3論文架構 4
第二章 行動無線通道特性 5
2.1通道模型 5
2.1.1大規模衰減(Large-scale Fading) 5
2.1.2小規模衰減(Small-scale Fading) 5
2.1.2.1時間延遲擴散(Time-delay Spread) 5
2.1.2.2都普勒擴散(Doppler Spread) 7
2.2同調頻寬(Coherent Bandwidth) 8
2.3頻率平緩衰減 (Frequency Flat Fading)及頻率選擇性衰減 (Frequency Selective Fading) 8
2.4多路徑衰減通道模型 9
2.5雷利衰減分佈 (Rayleigh Fading Channel Model) 10
2.6基頻通道數學模型(Baseband Channel Mathematical Model) 10
第三章 系統模型 12
3.1單載波分頻存取技術(SC-FDMA) 12
3.2單載波分頻多工系統架構 13
第四章 最小均方誤差(MMSE)等化器 16
4.1多用戶最小均方誤差等化器(Multi-user MMSE equalizer) 16
4.2單一用戶最小均方誤差等化器(Single-user MMSE equalizer) 17
4.3複雜度分析 19
第五章 子載波間干擾(ICI)消除 21
5.1 子載波間干擾消除 21
第六章 不同車速下用戶資源分配 25
6.1高低車速交錯分部 25
6.2高低車速區域分部 25
第七章 雙時變衰減通道下之位元錯誤率分析 27
7.1成對錯誤機率(Pairwise Error Probality) 27
7.2分析 與 之歐式距離(Euclidean Distance) 29
7.3 分析條件成對錯誤機率(Conditional Pairwise Error Probability) 30
7.4位元錯誤率(Bit Error Rate) 31
第八章 資源分配 32
8.1 分析 32
8.2最佳化問題(optimization problem) 32
8.3資源分配 35
8.3.1公平資源分配演算法(Fair resource allocation algorithm) 36
8.3.2激進資源分配演算法(Aggressive resource allocation algorithm) 37
8.4公平資源分配演算法 39
8.5激進資源分配演算法 41
第九章 模擬結果與討論 43
9.1模擬係數(Simulation Parameters) 43
9.2多用戶最小均方誤差等化器對於不同子載波映射方法在不同車速下比較 44
9.3單一用戶最小均方誤差等化器對於不同車速分部在不同子載波映射方法比較 45
9.3.1單一用戶最小均方誤差等化器於正規化都普勒頻率為0.01 45
9.3.2單一用戶最小均方誤差等化器於正規化都普勒頻率為0.1 47
9.4多用戶與單一用戶最小均方誤差等化器之計算複雜度比較 48
9.5多用戶最小均方誤差等化器對於不同車速分部在不同子載波映射方法比較 50
9.6迭代決策回授子載波間干擾消除 51
9.7最佳化資源分配 53
第十章 結論 56
參考文獻 57
參考文獻 [1] H. G. Myung, Single carrier orthogonal multiple access technique for broadband wireless
communications, Dissertation, Polytechnic University,NY, 2007.
[2] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPAand LTE for Mobile
Broadband, Academic Press Elevier, 2007.
[3] B. Karakaya, H. Arslan and H.A. Curpan , "Channel estimation for LTE uplink in high doppler
spread," in Proc .IEEE Wireless Communications and Networking Conference, 2008. WCNC 2008.
March 31 2008-April 3 2008. IEEE , vol., no., pp.1126-1130,
[4] M.Y.Shen and H. Liu, “Effect of the traffic channel configuration onthe orthogonal frequency
division mutiple access downlinkperformance ,” IEEE Trans. Wireless Commun., Jul. 2005, vol. 4,
pp. 1901-1913.
[5] O. Nwamadi, X. Zhu, and A. K. Nandi, “Enhanced greedy algorithmbased dynamic subcarrier
allocation for single carrier FDMA systems,”in Proc. IEEE Wireless Communications and
Networking Conf., April 2009, pp. 1-6.
[6] J. Lim, H. G. Myung, K. oh and D. J. Goodman, “Channel-dependent scheduling of uplink single
carrier FDMA systems,” in Proc. IEEE Vehicular Technology Conf. Sept. 2006, pp. 1-5.
[7] W.C. Pao and Y.F. Chen; , "Chunk Allocation Schemes for SC-FDMA Systems," in Proc. IEEE
Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st , May 2010, vol., no.,
58
pp.1-5, 16-19
[8] B. Priyanto, H. Codina, S. Rene, T. Sorensen, and P. Mogensen, “Initialof DFT-spread OFDM
BASed SC-FDMA for UTRA LTE uplink," in Proc. IEEE VTC’2007 Spring, Apr. 2007, pp.
3175-3179.
[9] H. Wu and T. Haustein. “Sum rate analysis of SDMA transmission in single carrier FDMA
system," in Proc. IEEE Singapore International Conf. Commun. Syst., Nov. 2008, pp. 846-850.
[10] G. Huang, A. Nix and S. Armour. “Decision feedback equalization in SC-FDMA," in Proc. IEEE
PIMRC, Sep. 2008 pp. 1-5.
[11] G. Berardinelli, B. Priyanto, T. Sorensen, and P. Mogensen, “Improving SC-FDMA performance
by turbo equalization in UTRA LTE uplink,”in Proc. IEEE VTC 2008 Spring, May 2008, pp.
2557-2561.
[12] W.G. Jeon, K.H. Chuang and Y.S. Cho, “An equalization technique for orthogonal frequency
division multiplexing systems in time-variant multipath channels,” in Proc.IEEE Trans. Commun.,
January 1999, vol. 49, pp. 1185–1191.
[13] X. Cai and G. B. Giannakis, “Low-complexity ICI suppression for OFDM over time- and
frequency-selective Rayleigh fading channels,” in Proc. Asilomar Conf. Signals, Systems and
Computers, Nov. 2002.
[14] S. Chen and T. Yao, “An inter-carrier interference suppression scheme for ofdm systems in time-varying fading channels,” in ISCAS’04, May 2004, vol. 3, pp. 337–340.
[15] Y.S. Choi, P. Voltz, and F. Cassara, “On channel estimation and detection for multicarrier signals
in fast and selective Aryleigh fading channels,” in Proc. IEEE Trans. Commun., Aug.2001, vol.
49, no. 8, pp. 1375–1387.
[16] P. Schniter, “Low-complexity equalization of ofdm in doubly selective channels,” IEEE Trans.
Signal Processing, vol. 52, no. 4, pp. 1002–1011,April 2004.
[17] Z. Hong and L. Thibault, “A novel channel estimation and ici cancellation for mobile ofdm
systems,” in PIMRC’07, Sept. 2007, vol. 1,pp.111–114.
[18] L. Zhang, Z. Hong and L. Thibault , "Iterative ICI estimation and cancellation for mobile OFDM
systems," in Proc. IEEE Communications (QBSC), 2010 25th Biennial Symposium on , May 2010,
vol., no., pp.197-200, 12-14
[19] G. Leus and P. Van Walree, “Multiband OFDM for covert acoustic communications,” IEEE J. Sel.
Areas in Commun., vol. 26, no. 9, pp.1662-1673, Dec. 2008.
[20] K. Tu, D. Fertonani, T. M. Duman and P. Hursky, ” Mitigation of intercarrier interference in
OFDM systems over underwater acoustic channels,” in Proc. IEEE Oceans Conf., Bremen,
Germany, May 2009.
[21] M. Beheshti, M. J. Omidi and A. M Doost-Hoseini, "Joint ICI and IBI cancelation for underwater
acoustic MIMO-OFDM systems," in Proc. Electrical Engineering (ICEE), 2011 19th Iranian Conference.
[22] Z. Han, Z. Ji, and K. Liu, “Fair Multiuser Channel Allocation for OFDMA Networks Using Nash
Bargaining Solutions and Coalitions,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1366–1376,
2005.
[23] S. Pfletschinger, G. Muenz, and J. Speidel, “Efficient subcarrier allocation for multiple access in
OFDM systems,” in Proc. International OFDM-Workshop, 2002.
[24] Y. Ma, “Constrained Rate-Maximization Scheduling for Uplink OFDMA,” in Proc. IEEE
MILCOM, pp. 1–7, Oct. 2007.
[25] J. Lim, et al., “Channel Dependent Scheduling of Uplink Single Carrier FDMA Systems,” in Proc.
IEEE VTC’06 Fall, pp. 1-5, Sept. 2006
[26] I. C. Wong, et al., “Optimal resource allocation in uplink SC-FDMA Systems” IEEE Trans.
Wireless Com. Vol. 8 No. 5. pp. 2161-2165, May 2009
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2012-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明