博碩士論文 995201073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.144.25.248
姓名 吳讚展(Tsan-Chan Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 自調整非線性慣性權重粒子群演算法
(Self-adjusted Nonlinear inertia weight PSO algorithm)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們提出了一種改良的粒子演算法(PSO),名為自調整非線性慣性權重粒子群演算法(SNPSO)。SNPSO是一種針對慣性權重改良的方法,利用非線性和自我調整的特性來改善粒子最佳化方法易落入區域最佳解的缺點。非線性具有較好的能力避免粒子落入區域最佳解,而自我調整性則能增加粒子的靈活性,使粒子具有較大的能力往全域最佳解作搜尋。本文亦提出一種針對SNPSO參數最佳化的搜索策略,使得我們在選取參數時更具有策略性。最後,我們使用16個目標函數對SNPSO演算法進行模擬與測試,並且與幾個已提出的PSO演算作比較。經由模擬結果顯示,本文所提出的自調整非線性慣性權重粒子群演算法在目標函數中的表現,整體來說均有較優越的表現,同時也顯示本文所提出的方法能有效的改善PSO演算法的搜索效能並改善PSO演算法易落入區域最佳解的缺點。
摘要(英) In this thesis we have presented an improved algorithm for Particle Swarm Optimization (PSO) named Self-adjusted Nonlinear inertia weight PSO algorithm (SNPSO). SNPSO algorithm is an improved method of the inertia weight, utilize nonlinear and self-modulation characteristics to improve PSO algorithm that is easy to trap into the local optimal solution,
The thesis also presents a method of searching parameters in the SNPSO. Finally, The performance of SNPSO is fairly demonstrated by applying sixteen benchmark problems and comparing it with several popular PSO algorithm. The analysis of result shows that our proposed methods is effective and gain better performance than other popular PSO algorithms.
Furthermore, our method can efficiently improve the performance of standard PSO and more ability to prevent the particle fall into some local optimal solutions.
關鍵字(中) ★ 非線性
★ 粒子群演算法
★ 慣性權重
關鍵字(英) ★ Nonlinear inertia weight
★ PSO
論文目次 中文摘要 ................................................. I
英文摘要 ................................................ II
目錄 ................................................... III
圖目錄 ................................................... V
表目錄 ................................................. VII
一. 緒論 ................................................. 1
1-1 研究動機 ........................................... 1
1-2 論文架構 ........................................... 4
二. 粒子群演算法 .......................................... 5
2-1 粒子群演算法 ....................................... 5
2-2 粒子群演算法基本公式和模式 .......................... 5
2-3 慣性權重 ............................................ 6
三. 自調整非線性慣性權重粒子群演算法 ..................... 10
3-1 引言 ............................................... 10
3-2 自調整非線性慣性權重粒子群演算法 ................... 11
3-2-1 非線性慣性權重 ................................ 11
3-2-2 自調整慣性權重 ................................ 13
3-2-3 自調整非線性慣性權重 .......................... 14
3-3 PSO 訓練參數 ....................................... 17
3-3-1 目標函數 ...................................... 18
3-3-2 訓練結果 ...................................... 22
四. 自調整非線性慣性權重粒子群演算法改良與變化 ........... 25
4-1 引言 .............................................. 25
4-2 SNPSO-QI .......................................... 25
4-3 SNPSO-SB .......................................... 27
五. 測試結果 ............................................ 30
5-1 目標函數與設定 ..................................... 30
5-2 測試方法與結果 ..................................... 36
5-2-1 10 維測試結果 ................................. 37
5-2-2 30 維測試結果 ................................. 45
六. SNPSO 應用於FOPID 控制器設計 ......................... 53
6-1 FOPID 控制器 ....................................... 53
6-2 Crone 近似法 ...................................... 53
6-3 FOPID 控制器設計 ................................... 54
6-4 直流馬達(DC Motor) ................................. 57
6-5 實驗結果 ........................................... 57
6-5-1 演算法收斂值 .................................. 58
6-5-2 步階暫態響應測試結果 ........................... 60
七. 總結與未來展望 ....................................... 65
7-1 總結 .............................................. 65
7-2 未來展望 .......................................... 66
參考文獻 ................................................ 67
參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942−1948, 1995.
[2] W. D. Chang and S. P. Shih, “PID controller design nonlinear systems using an improved particle swarm optimization approach,” Communication Nonlinear Science and Numerical Simulation, vol. 15, pp. 3632-3639, 2010.
[3] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization: Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2001.
[4] R. A. Krohling and L. S. Coelho, “Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problem,” In Proceedings of IEEE Transactions on Systems, Man and Cybernetics –Part B: Cybernetics, vol. 36, no. 6, pp. 1407-1416, 2006.
[5] D. Srinivasan , W. H. Loo and R. L. Cheu, “Traffic incident detection using particle swarm optimization,” In Proceedings of IEEE Swarm Intelligence Symposium, pp.144-151, 2003.
[6] S. –Y. Ho, H. –S. Lin, W. –H. Liauh and S. –J. Ho, “OPSO: Orthogonal particle swarm optimization and its application to task assignment problems,” In Proceedings of IEEE Transactions on Systems, Man and Cybernetics –Part A: Systems and Humans, vol. 38, no. 2, pp. 288-298, 2008.
[7] F. Xie, Y. Wang, Z. Zheng and C. Li, “Optimal Control of Switched Linear Systems Based on Migrant Particle Swarm Optimization Algorithm,” In Proceedings of the 2010 International Conference on Modelling, Identification and Control, pp. 237-241, 2010.
[8] Y. Shi, and R. C. Eberhart, “Parameter Selection in Particle Swarm Optimization,” Evolutionary Programming VII. Lecture Notes in Computer Science, vol. 1447, pp. 591–600, 1998.
[9] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1951−1957, 1999.
[10] N. M. Kwok, D. K. Liu, K. C. Tan and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” In Proceedings of IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[11] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” In Proceedings of IEEE Transaction on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, 2002.
[12] J. Jie, J. zeng, C. Han and Q. Wang, “Knowledge-based cooperative particle swarm optimization,” Applied Mathematics and Computation, vol. 205, pp. 861-873, 2008.
[13] J. Wei, L. Guangbin and L. Dong, “Elite Particle Swarm Optimization with Mutation,” 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, pp. 800-803, 2008.
[14] W. –P. Lee, W. –Y. Xian and C. –C. Wen, “Research on a Modified Particle Swarm Optimization Algorithm,” Journal of Engineering Technology, vol. 4, no. 2, pp. 51-62, 2008.
[15] Y. –T. Juang, S. –L. Tung and H. –C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, vol. 181, pp. 4539-4549, 2011.
[16] A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers and Operations Research, vol. 33, no. 3, pp. 859–871, 2004.
[17] C. Dong, G. Wang, Z. Chen and Z. Yu, “A Method Of Self-Adaptive Inertia Weight For PSO,” In Proceedings of IEEE International Conference on Computer Science and Software Engineering, pp. 1195-1198 , 2008.
[18] C. Liu and C. Ouyang, “An adaptive fuzzy weight PSO algorithm,” In Proceedings of IEEE Fourth International Conference on Genetic and Evolutionary Computing, pp. 8-10, 2010.
[19] J. Kennedy, R. C. Eberhart, and Y. H. Shi, “Swarm Intelligence,” Morgan Kaufmann division of Acadenic, 2001.
[20] 董聖龍,「粒子群演算法於二階時變系統穩定分析與穩定化設計」,國立中央大學,博士論文,民國100年。
[21] M. Dorigo, V. Maniezzo and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” In Proceedings of IEEE Transactions on Systems and Cybernetics - Part B, vol. 26, no. 1, pp. 29-41, 1996.
[22] D. Fogel and H. G. Beyer “A note on the empirical evaluation of intermediate recombination,” Evolutionary Computation, vol. 3, no. 4, pp. 491-495.
[23] Y. Shi, and R. C. Eberhart, “Comparison between genetic algorithms and particle swarm optimization,” Evolutionary Programming VII. Lecture Notes in Computer Science, vol. 1447, pp. 611-616, 1998.
[24] J. Kennedy and W. M. Spears, “Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator,” In Proceeding of IEEE World Congress on Computational Intelligence, pp. 78-83, 1988.
[25] J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” Cambridge, Mass: MIT Press, 1992.
[26] 王文俊,認識fuzzy,全華出版,第三版,2007。
[27] R. C. Eberhart and Y. H. Shi, “Particle swarm optimization: Developments, applications and resources,” In Proceeding of IEEE Congress on Evolutionary Computation, pp. 81-86, 2001.
[28] R. C. Eberhart and Y. H. Shi, “A modified particle swarm optimizer,” In Proceeding of IEEE World Congress On Computational Intelligence, pp. 69-73, 1988.
[29] R. C. Eberhart and Y. H. Shi, “Empirical study of particle swarm optimization,” In Proceeding of IEEE Congress on Evolutionary Computation, pp. 1945-1950, 1999.
[30] Z. -H. Zhan, J. Zhang, Y. Li and H. S. –H. Chung, “Adaptive Particle Swarm Optimization,” In Proceedings of IEEE Transactions on Systems ,Man, and Cybernetics-Part B: Cybernetics, vol. 39, no. 6,pp. 1362-1381, 2009.
[31] 陳珈妤,「快速平衡粒子群最佳化方法」,國立中央大學,碩士論文,民國100年。
[32] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,國立中央大學,碩士論文,民國99年。
[33] J. Hu, J. Zeng, Y. Yang, “A two-order Particle Swarm Optimization Model and the Selection of its Parameters,” In Proceedings of the 6th Congress on Intelligent Control and Automation, June 21-23, 2006.
[34] M. Pant, T. Radha and V. P. Singh, “A New Particle Swarm Optimization with Quadratic Interpolation,” In Proceedings of IEEE International Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[35] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: a unified particle swarm scheme,” In Lecture series on Computer and Computational Sciences, vol. 1, pp. 868-873, 2004.
[36] R. Mendes, J. Kennedy and J.Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 204-210, 2004.
[37] J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 124-129, 2005.
[38] A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240 - 255, 2004.
[39] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, pp. 281–296, 2006.
[40] N. Iwasaki, K. Yasuda and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEJ Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[41] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli and M. Dorigo, “Heterogeneous particle swarm optimizers,” Proceedings of IEEE congress on Evolutionary Computation, pp. 698–705, 2009.
[42] P. N. Suganthan, N. Hansen, J. J. Liang and K. Deb, Y. -P. Chen, A. Auger & S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005.
[43] Y. Tang, M. Cui, C. Hua, L. Li and Y. Yang, “Optimum design of fractional order controller for AVR system using chaotic ant swarm,” Expert Systems with Applications, vol. 39, pp. 6689-6896, 2012.
[44] A. Biswas, S. Das, A. Abraham and S. Dasgupta, “Design of fractional-order controllers with an improved differential evolution,” Engineering Applications of Artificial Intelligence, vol. 22, pp. 243-350,2009.
[45] J. Y. Cao and B. G. Cao, “Design of Fractional Order Controller Based on Particle Swarm Optimization,” International Journal of Control, Automation and Systems, vol. 4, pp. 775-781,2006.
[46] A. A. Jalali and A. Khosravi, “Tuning of FOPID Controller Using Taylor Series Expansion,” International Journal of Scientific and Engineering Research, vol. 2, 2011.
[47] I. Podlubny, “Fractional-Order Systems and Controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
[48] A. Oustaloup , “La commande CRONE: commande robuste d’order non entire,” Herme’s, Paris, 1991.
[49] A. Oustaloup, X. Moreau, M. Nouillant, “The CRONE suspension,” Control Engineering Practice, vol. 4, pp. 1101-1108, 1996.
[50] K. A. Naik and P. Srikanth, “Stability Enhancement of DC Motor using IMC Tuned PID Controller,” International Journal of Advanced Engineering Sciences and Technologies, vol. 4, pp. 92-96, 2011.
[51] G. Huang and S. Lee, “PC based PID speed control in DC motor,” IEEE International Conference on Audio, Language and Image Processing, pp. 400-407, 2008.
指導教授 莊堯棠(Yau-Tang Juang) 審核日期 2012-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明