博碩士論文 995201080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.224.43.74
姓名 陳弘毅(Hong-Yi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 敏捷移動粒子群最佳化方法
(Yare immigration particle swarm optimization)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 改良式粒子群方法之無失真影像預測編碼應用
★ 粒子群演算法應用於語者模型訓練與調適之研究★ 粒子群演算法之語者確認系統
★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究★ 利用語者特定背景模型之語者確認系統
★ 智慧型遠端監控系統★ 正向系統輸出回授之穩定度分析與控制器設計
★ 混合式區間搜索粒子群演算法★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 非監督式快速語者調適演算法研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 敏捷遷移粒子群演算法(YIPSO)是藉由觀察於鳥群、魚群以及學生團體等群體來改善標準粒子群演算法(PSO)進而增強其收斂效率。通常一個族群中的個體常常會因為能力、興趣以及個性等等分為許多更小的團體,而這些小團體的行為通常會間接影響整個族群的表現。根據上述狀況,YIPSO選擇在標準演算法中加入兩種概念:將整個族群隨機分組成較小的族群,而每個小族群之中最好的個體將會帶領其他個體更迅速且有效率地往最佳的結果邁進。其二,再將在整個族群中表現較好的粒子當作菁英挑出,這些菁英將會比以往只有一個gbest對整個族群有著更大的影響性。在改善了標準粒子群演算法之後,考慮將其應用於一水輪機調速器之PID控制系統的參數選擇,且比較不同演算法對於其參數的選擇來讓整個系統穩定。
摘要(英) The yare immigration particle swarm optimization (YIPSO) is an improved method of the standard particle swarm optimization by observing behaviors of the flocks of fishes, birds and students to enhancing the performance of the swarm. There are usually a few smaller groups in the flock because of the ability, interest, individuality, etc., and these groups might affect the result of the flock. Considering thess situations, two concept are added to PSO as YIPSO. The first one is dividing the flock into smaller groups randomly, therefore the best one of each smaller group will take other individuals to the optimal way. The second part is choosing not only one best as gbest but some behaving well in the flock as elitists. Thus these individuals performing well will make a greater impact than before. After improving the original particle swarm optimization, there is a water turbine governor system with PID controller which needs for parameter choosing, so we use some different particle swarm optimizations to select the parameter of the PID controller.
關鍵字(中) ★ 粒子群最佳化方法
★ 加速度係數
★ 隨機分組
★ 菁英
關鍵字(英) ★ sub-swarm
★ acceleration coefficient
★ elitist
★ particle swarm optimization
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 研究背景與論文架構 1
1-1 研究背景 1
1-2 本論文架構與流程 4
第二章 最佳化方法 7
2-1 相關文獻探討 7
2-2 人工智慧技術最佳化方法 8
2-2-1基因演算法 (Genetic Algorithms, GA) 8
2-2-2 類神經網路 (Artificial Neural Network, ANN) 10
2-2-3 粒子群演算法 (Particle Swarm Optimization, PSO) 12
第三章 粒子群最佳化方法 17
3-1 敏捷移動例子群最佳化方法 17
3-2 動態隨機分組粒子群演算法 18
3-3 菁英進步式粒子群演算法 22
3-4 以時變方式調整加速度因子 26
3-5 隨機分組與精英進步之整合 27
第四章 測試模擬結果 29
4-1 演算法參數設定 29
4-2 測試函數相關資訊 30
4-3 測試結果 34
10維測試結果 34
30維測試結果 42
第五章 粒子群演算法之相關應用 51
5-1 粒子群演算法相關應用 51
5-2 粒子群演算法應用於PID控制 51
第六章 結論 60
6-1 總結 60
6-2 未來發展 61
參考文獻 62
參考文獻 [1] I. Mukherjee and P. K. Ray, “A review of optimization techniques in metal cutting processes,” Computers & Industrial Engineering, Vol. 50, no.1-2, pp.15-34, 2006.
[2] M. Imiela, “High-fidelity optimization framework for helicopter rotors,” Aerospace Science and Technology, 2011.
[3] I. Averbakh, “Computing and minimizing the relative regret in combinatorial optimization with interval data,” Discrete Optimization, Vol. 2, no.4, pp.273-287, 2004.
[4] B. Srinivasan, D. Bonvin, E. Visser and S. Palanki, “Dynamic optimization of batch processes II. Role of measurements in handling uncertainty,” Computers and Chemical Engineering, Vol. 27, no.1, pp. 27-44, 2002.
[5] B. Y. Mirghani, K. G. Mahinthakumar, M. E. Tryby, R. S. Ranjithan and E. M. Zechman,“A parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problems,” Advances in Water Resources, Vol. 32, no. 9, pp. 1373-1385, 2009.
[6] I. Ioslovich and P. Gutman,“Optimal control of crop spacing in a plant factory,” Automatica, Vol. 36, no. 11, pp.1665-1668, 2000.
[7] E. Amaldi, A. Capone, M. Cesana, I. Filippini and F. Malucelli “Optimization models and methods for planning wireless mesh networks,” Computer Networks, Vol. 52, no.11, pp. 2159-2171, 2008.
[8] A. Khetrapal:Ant Based Distributed certificate revocation in vehicular ad hoc networks. 取自:http://www.ankurkhetrapal.com/research/proteus.htm
[9] M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization,” IEEE computation intelligence magazine, Vol. 1, no. 4, pp. 28-39, 2006.
[10] D. Karaboga,“An idea based on honey bee swarm for numerical optimization,” technical report-tr06, 2005. 取自:http://www-lia.deis.unibo.it/Courses/SistInt/articoli/bee-colony1.pdf
[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Third edition), 2011.
[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” In Proceedings of IEEE Conference on Neural Networks, Vol. 4, pp. 1942-1948, 1995.
[13] 粒子群優化算法實現鳥群覓食。2011年06月15日。取自http://blog.csdn.net/x0070704/article/details/6546415
[14] 董聖龍,「粒子群演算法於二階時便系統穩定分析與穩地化設計」,國立中央大學,博士論文,民國100年。
[15] 邱鴻志,「粒子群演算法之調適性模糊邏輯控制」,國立中央大學,碩士論文,民國99年。
[16] N. M. Kwok, Q. P. Ha, Dikai Liu, and Gu Fang, “Contrast Enhancement and Intensity Preservation for Gray-Level Images Using Multi-objective Particle Swarm Optimization,” IEEE transaction on automation science and engineering, vol. 6, no. 1, pp.145-155, 2009.
[17] J. F. Wang, W.H. Li, “Based on Extended T-S Fuzzy Model of Self-adaptive Disturbed PSO Algorithm,” Second International Conference on Information and Computing Science, Vol. 3, pp.153-155, 2009.
[18] W. Liu, B. Gao and X. Liang, “Power System Reactive Power Optimization Based on Improved PSO,” World Congress on Intelligent Control and Automation, pp. 3974-3979, 2010
[19] M. Cui and S. Hu, ”Search engine optimization research for website promotion,” International Conference on Information Technology, Computer Engineering and Management Sciences. Vol.4, pp.100-103, 2011.
[20] Y. T. Hsiao, C. L. Chuang, J. A. Jiang and C. C. Chien, “A Novel Optimization Algorithm : Space Gravitational Optimization,” International Conference on Systems, Man and Cybernetics, Vol. 3, pp. 2323-2328, 2005.
[21] 林柏勳,胡光復,沈哲緯,辜炳寰與鄭錦桐,「最佳化方法於工程上之應用」,中興工程季刊,2009。
[22] G, Renner, A. Ekart, “Genetic algorithms in computer aided design,” Computer-Aided Design, Vol. 117, no. 1-2, pp. 216-221, 2002.
[23] J. E. B Easley and R. C. Chu, “A genetic algorithm for the set covering problem,” European Journal of Operational Research, Vol. 94, no. 2, pp. 392-404, 1995.
[24] T. K.n Liu, C. H. Chen and J. H. Chou, “Optimization of short-haul aircraft schedule recovery problems using a hybrid multiobjective genetic algorithm,” Expert Systems with Applications, Vol. 37, no. 3 pp. 2307-2315, 2010.
[25] 陳俊旭:油對身體的重要性。2007年05月25日。取自:http://www.epochtimes.com/b5/7/5/24/n1720580p.htm
[26] 人工智慧與機器學習。2007年05月03日。取自:http://mmdays.wordpress.com/2007/05/03/ai/
[27] Z. H. Zhou, Y. Jiang, Y. B. Yang and S. F. Chen, “Lung cancer cell identification based on artificial neural network ensembles,” Artificial intelligence in medicine, Vol. 24, no. 1, pp. 25-26, 2002
[28] E. Lewis, C. Sheridan, M. O’Farrell, D. King, C. Flanagan, W. B. Lyons, C. Fitzpatrick, “Principal component analysis and artificial neural network based approach to analysing optical fibre sensors signals,” Sensors and Actuators, Vol. 136, no. 1, pp. 28-38, 2007
[29] H. B. Bahar and D. H. Horrocks “Dynamic weight estimation using an artificial neural network,” Artificial intelligence in Engineering, Vol. 12, no. 1-2, pp. 135-139, 1998.
[30] A. RajaRajan, “Brain Disorder Detection using Artificial Neural Network”, 3rd International Conference on Electronics Computer Technology (ICECT), Vol. 4, pp. 268-272, 2011.
[31] Y. Shi, H. c. Liu, L. Gao and G. Zhang, “Cellular particle swarm optimization,” Information Sciences, Vol. 181, no. 20, pp. 4460-4493, 2007.
[32] J. Jie, J. Zeng, C. Han and Q. Wang, “Knowledge-based cooperative particle swarm optimization,” Applied Mathematics and Computation, 2008.
[33] S.Z. Zhao, P.N. Suganthan, Q. K. Pan and M. F. Tasgetiren “Dynamic multi-swarm particle swarm optimizer with harmony search,” Expert Systems with Applications, Vol. 605, no. 2, pp. 861-873, 2011.
[34] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan and Q. Tian “Self-adaptive learning based particle swarm optimization,” Information Sciences, Vol. 181, no. 20, pp. 4515-4538, 2011.
[35] D. Jia, G. Zheng, B. Qu and M. K. Khan, “A hybrid particle swarm optimization algorithm for high-dimensional problems,” Computers & Industrial Engineering, Vol. 41, no. 4, pp. 1117-1122, 2011.
[36] M. S. Arumugam, M.V.C. Rao and A. W.C. Tan, “A novel and effective particle swarm optimization like algorithm with extrapolation technique,” Applied Soft Computing, Vol. 9, no. 1, pp. 308-320, 2009.
[37] W. D. Chang and S. P. Shih, “PID controller design of nonlinear systems using an improved particle swarm optimization approach,” Commun Nonlinear Sci Numer Simulat, Vol. 15, no.11, pp.3632-3639. 2010.
[38] J. J. Liang and P. N. Suganthan, “Dynamic Multi-Swarm Particle Swarm Optimizer,” Swarm Intelligence Symposium, pp. 124-129, 2005.
[39] L. Lu, Q. Luo, J. Y. Liu and C. Long, “An Improved Particle Swarm Optimization Algorithm,” IEEE International Conference on Granular Computing, Vol. 1, pp. 585-589, 2008.
[40] 陳珈妤,「快速平衡粒子群最佳化方法」,國立中央大學,碩士論文,民國100年。
[41] G. Y. Wang and D. X. Han, “Particle Swarm Optimization Based on Self-adaptive Acceleration Factors,” WGEC ’’09. 3rd International Conference on Genetic and Evolutionary Computing, pp. 637-640 ,2009.
[42] P. K. Tripathi, S. Bandyopadhyay and S. K. Pal “Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients,” Information Sciences, Vol. 177, no. 22, pp. 5033-5049, 2007.
[43] 蔡憲文,「以時變學習因子策略改良粒子群演算法」,國立中央大學,碩士論文,民國99年。
[44] R.C. Eberhart and Y. Shi, “Tracking and Optimizing Dynamic Systems with Particle Swarms,” Proceedings Congress on Evolutionary Computation, Vol. 1, no. 22, pp. 94-100, 2001..
[45] Y. Liu, Z. Qin, Z. Shi and J. Lu, “Center particle swarm optimization,” Neurocomputing, Vol. 70, no. 46, pp. 672-6792007.
[46] N. Higashi and H. Iba, “Particle swarm optimization with Gaussian mutation,” Proceedings of the IEEE Swam Intelligence Symposium, pp. 72-79,2003.
[47] A. Ratnaweera, S.K. Halgamuge, Watson H.C. , “Self-organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficient,” IEEE Transactions on Evolutionary Computation, Vol. 8, no. 3, pp.240-255, 2004. 
[48] M. Pant, T. Radha and V.P.Singh, “A new particle swarm optimization with quadratic interpolation,” In Proceedings of IEEE International Conference on Computational Intelligence and Multimedia Applications, Vol. 1, pp. 55–60, 2007.
[49] N. Iwasaki, K. Yasuda, G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEJ Transactions on Electrical and Electronic Engineering 1, Vol. 1, no. 4, pp. 353-363, 2006.
[50] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test functions for numerical global optimization,” In Proceedings of IEEE on Swarm Intelligence Symposium, pp. 68-75, 2005.
[51] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger & S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Technical report of Nanyang Technological University, 2005. 取自:http://www.lri.fr/~hansen/Tech-Report-May-30-05.pdf。
[52] K. Tang, X. Lǐ, P. N. Suganthan, Z. Yang, and T. Weise: “Benchmark Functions for the CEC’’2010 Special Session and Competition on Large-Scale Global Optimization,” University of Science and Technology of China (USTC) and Nature Inspired Computation and Applications Laboratory (NICAL), 2010. 取自:http://nical.ustc.edu.cn/cec10ss.php。
[53] R. Salomon, ”Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions,” BioSystems, Vol. 39, no. 3, pp. 263-278, 1996.
[54] G. Nicosia, S. Rinaudo and E. Sciacca, “An evolutionary algorithm-based approach to robust analog circuit design using constrained multi-objective optimization,” Knowledge-Based Systems, Vol. 21, no. 3, pp. 175-183, 2008.
[55] H. Fang, L. Chen and Zuyi Shen, “Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor,” Energy Conversion and Management, Vol. 52, no. 4, pp.1763-1770, 2011.
[56] H Fang, L Chen, N Dlakavu and Z Shen, “Basic modeling and simulation tool for analysis of hydraulic transients in hydroelectric power plants,” IEEE Trans Energy Convers, Vol. 23, no. 3, pp.834-841,2008.
[57] 維基百科-水輪機。取自:http://zh.wikipedia.org/wiki/%E6%B0%B4%E8%BD%AE%E6%9C%BA
[58] C. Jiang, Y. Ma and C. Wang, “PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming(DCMEP),” Energy Convers Manage, Vol. 47, no. 9-10, pp.1222-1230, 2009.
[59] J. Fang, D. Zheng and Z. Ren, “Computation of stabilizing PI and PID controllers by using Kronecker summation method,” Energy Convers Manage, Vol.50, no. 7, pp.1821-1827, 2009.
[60] A. Bartoszewicz and N. Leverton, “ITAE optimal sliding modes for thirdorder systems with input signal and state constraints,” IEEE Trans Autom Contr, Vol. 50, no. 8, pp.1928–1932, 2010.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2012-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明