博碩士論文 995201103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.33.244
姓名 涂聖強(Sheng-chiang Tu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 寬頻主動式半循環器與平衡器研製
(Design and Analysis of Wideband Active Quasi-Circulator and Active Balun)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今無線通訊技術快速的發展,切換器(switch)與雙工器(diplexer)電路主要用於前端收發系統中區隔收發訊號的功能,固然切換器作為分隔收發訊號的功能有不錯的隔離度且不會有直流功耗,但接收與發射的訊號不能同使開啟。而雙公器也擁有分隔收發訊號的能力,不同於切換器的地方乃是其利用雙頻帶的方式來實現,因此接收訊號的頻帶不同於與發射訊號的頻帶。而半循環器(quasi-circulator)則擁有兩者所沒有的優點,半循環器在區隔收發訊號時,可以同時並使用相同頻帶來完成訊號傳送,故此本論文將著眼探討如何設計並且分析半循環器電路。
根據已發表的論文中,使用主動式半循環器的文獻相較於其它電路的量是較少的,因此在本論文的第一章將列舉出幾種不同架構的主動式半循環器電路,並針對各個架構的作一簡單的介紹,方便讀者能快速了解其電路的運作原理。第二章為分別利用穩懋半導體股份有限公司提供的0.5 µm E/D-mode PHEMT與HBT/HEMT 2 µm/0.5 µm製程,台積電提供的CMOS 0.18 µm 製程技術並且搭配相位補償技術製作出3.2 ~ 14 GHz、5 ~ 20.2 GHz與3.9 ~ 32.7 GHz的主動式半循環器,插入損耗分別為-6 ~ -3 dB、-6.3 ~ -2.5 dB與-8 ~-4.8 dB。第三章則是使用穩懋半導體公司所提供的0.5 µm E/D-mode PHEMT製程技術實現出DC ~ 15 GHz的主動式平衡器,在頻帶內振幅誤差小於0.15 dB,相位誤差小於1度,小訊號增益大於5 dB,而後進一步利用此設計的主動式平衡器搭配達靈頓放大器實現出DC ~ 12 GHz的寬頻主動式半循環器,小訊號增益大於5 dB,在此頻寬範圍內隔離度均大於18 dB。第四章 利用台積電所提供CMOS 90 nm製程,延伸第三章的理論推導分析,搭配疊接分佈式達靈頓放大器設計出4.4 ~ 42 GHz的寬頻主動式半循環器,隔離度表現大於22 dB,小訊號增益大於-1 dB。第五章則是利用台積電所提供CMOS 90 nm製程,設計兩組矩陣分佈式放大器與三組堆疊二維方向正交耦合器成功實現40 ~ 83 GHz的主動寬頻半循環器,平均隔離度在頻寬範圍內大於12 dB,小訊號增益大於0 dB。
摘要(英) As the wireless communications are rapidly developing, the switch or diplexer is widely used in a transceiver for time or frequency division. The switch has good isolation between transmitter and receiver with no DC power consumption, but it cannot be used for the full diplexing system. The diplexer can be used to separate the receiving and transmitting signals, but the receiving frequency is different from the transmitting frequency. A quasi circulator can be adopted to connect the transmitter and the receiver with an antenna as a duplexer when the transmitting frequency is the same as the the receiving frequency. So this thesis will focus on the design and analysis of the quasi circulator.
According to the previously published literatures, a few active quasi circulators have been reported. Several different architectures of the active quasi circulators are introduced in Chapter 1, and the principle of operation is also presented. In Chapter 2, a phase compensation technique is adopted to improve the isolation of the active quasi circulator. Three active quasi circulators are successfully developed using 0.5 µm GaAs E/D-mode PHEMT, 2µm /0.5 µm GaAs HBT-HEMT, and 0.18 µm CMOS processes, respectively. Between 3.2 and 14 GHz, the insertion gain of the E/D-mode PHEMT quasi circulator is from -6 to -3 dB. Between 5 and 20.2 GHz, the insertion gain of the HBT-HEMT quasi circulator is from -6.3 to -2.5 dB. Between 3.9 and 32.7 GHz, the insertion gain of the CMOS quasi circulator is from -8 to -4.8 dB.
In Chapter 3, an innovative circuit topology for active balun/quasi circulator is investigated to further enhance the performance. A DC-to-15 GHz active balun is proposed using the 0.5 µm E/D-mode PHEMT process. The active balun has an amplitude imbalance of within 0.15 dB, an phase imbalance of within 1 degree, and a small signal gain of higher than 5 dB. Furthermore, the active balun is adopted to design a DC-to-12 GHz active quasi-circulator with a Darlington amplifier. The active quasi-circulator demonstrates a small signal gain of better than 5 dB, and an isolation of higher than 18 dB.
Based on the proposed topology in Chapter 3, a 4.4-to-42 GHz active quasi-circulator is presented using 0.18 µm CMOS process to extend the operation frequency in Chapter 4. The isolation is higher than 22 dB and the small signal gain is better than -1 dB. In Chapter 5, a millimeter-wave (MMW) active quasi circulator in 90 nm CMOS process are designed using two pairs of matrix distributed amplifiers and three broadside couplers. Between 40 and 83 GHz, the MMW quasi circulator has an average isolation of higher than 12 dB and a small signal gain of better than 0 dB.
關鍵字(中) ★ 寬頻放大器
★ 主動式半循環器
★ 共模拒斥比
★ 主動式平衡器
關鍵字(英) ★ CMRR
★ DA
★ active balun
★ quasi-circulator
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XVIII
第一章 導論 1
1.1 研究背景與動機 1
1.2 相關研究發展 4
1.3 論文貢獻 14
1.4 論文架構 15
第二章 利用相位補償技術結合分佈式放大器架構組成寬頻主動半循環器(Quasi-Circulator) 17
2.1 簡介 17
2.2 利用0.5 µm PHEMT製程設計3.2 ~ 14 GHz的主動半循環器 18
2.2.1 主動式半循環器設計與模擬結果 18
2.2.2 主動式半循環器量測結果 29
2.3 利用HBT/HEMT 2 um/ 0.5 um製程設計5 ~ 20.2 GHz的主動半循環器 37
2.3.1 主動式半循環器設計與模擬結果 37
2.3.2 主動式半循環器量測結果 47
2.4 利用0.18 µm CMOS製程設計3.9 ~ 32.7 GHz的寬頻主動半循環器 57
2.4.1 主動式半循環器設計與模擬結果 57
2.4.2 主動式半循環器量測結果 64
2.5 結果與討論 73
第三章 結合主動式平衡器與達靈頓放大器架構之主動半循環器  75
3.1 簡介 75
3.2 主動式平衡器原理 76
3.2.1 主動式平衡器相關研究與發展 76
3.2.2 共閘極、共源極主動式平衡器架構設計原理 79
3.2.2.1 單級共閘極、共源極奇偶模分析 79
3.2.2.2 電流源分析 82
3.2.2.3 兩級單端輸入雙端輸出平衡器奇偶模分析 86
3.2.3 共模拒斥比分析 94
3.2.4 利用0.5 µm PHEMT製程設計DC ~ 15 GHz 主動式平衡器的設計與分析 97
3.2.4.1 介紹 97
3.2.4.2 DC ~ 15 GHz主動式平衡器設計模擬結果 98
3.2.5 利用0.5 µm PHEMT製程設計DC ~ 15 GHz 主動式平衡器模擬與量測結果 111
3.2.6 結果與討論 121
3.3 結合主動式平衡器與達靈頓放大器架構之主動半循環器實現於0.5 µm PHEMT製程 122
3.3.1 達靈頓放大器相關研究與發展 122
3.3.2 達靈頓放大器電路架構設計和模擬結果 126
3.3.3 隔離度分析 130
3.3.4 結合主動式平衡器與達靈頓放大器架構之主動半循環器實現於0.5 µm PHEMT製程設計分析與模擬結果 132
3.3.5 結合主動式平衡器與達靈頓放大器架構之主動半循環器實現於0.5 µm PHEMT製程再模擬與量測結果 139
3.3.6 結果與討論 154
第四章 結合主動式平衡器與達靈頓疊接分佈式放大器之主動半循環器 156
4.1 簡介 156
4.2 主動式半循環器設計與模擬結果 157
4.2.1 主動式平衡器設計與模擬結果 157
4.2.2 達靈頓疊接分佈式放大器設計與模擬結果 162
4.2.3 主動式半循環器模擬結果 167
4.3 主動式半循環器量測結果 176
4.3.1主動式半循環器量測結果 176
4.3.2 結果與討論 186
第五章 利用堆疊二維方向正交耦合器配合疊接三級矩陣分佈式放大器實現寬頻主動半循環器 188
5.1 簡介 188
5.2 主動半循環器設計與模擬結果 189
5.2.1 堆疊二維方向正交耦合器 189
5.2.2 疊接三級矩陣分佈式放大器 197
5.2.3 主動半循環器模擬結果 201
5.3 主動半循環器量測結果 205
5.3.1 主動半循環器量測結果 205
5.3.2 結果與討論 212
第六章 結論 214
參考文獻 217
參考文獻 [1] S. Hara, T. Tokumitsu, and M. Aikawa, “Novel Unilateral Circuits for MMIC Circulators,” IEEE Tranactions Microwave Theory and Techniques, vol. 38, no. 10, pp. 1399–1406, Oct. 1990.
[2] D. Kother, B. Hopf, T. Sporkmann, and I. Wolff, “Active CPW MMIC Circulator For The 40 GHz Band,” in Proc.24th Int. Eur. Microw. Conf., Cannes, France, 1994, pp. 542–547.
[3] A. Gasmi, B. Huyart, E. Bergeault, and L. Jallet, “Noise and Power Optimization of MMIC Quasi-Circulator,” IEEE Tranactions Microwave Theory and Techniques, vol. 45, no. 9, pp. 1572–1577, Sep. 1997.
[4] C. Saavedra and Y. Zheng, “Active Quasi-Circulator Realization With Gain Elements and Slow-Wave Couplers,” IET Microw. Antennas, Propag., vol. 1, no. 5, pp. 1020-1023, 2007.
[5] Steve W. Y. Mung, Student Member, “Novel Active Quasi-Circulator With Phase Compensation Technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 800-802, Dec. 2008.
[6] S-C. Shin, J-Y. Huang, K-Y. Lin, and H. Wang, “A 1.5-9.6 GHz Monolithic Active Quasi-Circulator in 0.18 um CMOS Technology,” IEEE Microw. Wirelsee Compon. Lett., vol. 18, no. 12, pp. 797-799, Dec. 2008.
[7] Y. Zheng and C. Saavedra, “Active Quasi-Circulator MMIC using OTAs,” IEEE Microwave and Wireless Components Lett., vol. 19, no. 4, pp. 218–220, Apr. 2009.
[8] S. Cheung, T. Halloran, W. Weedon, and C. Caldwell, “Active Quasi-Circulators using Quadrature Hybrids for Simultaneous Transmit and Receive,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston,MA, Jun. 2009, pp. 381-384.
[9] M. Berg, T. Hackbarth, B. Maile, S. KoBlowski, and J. Dickmann, “Active Circulator MMIC in CPW Technology Using Quarter Micron InAlAs/InGaAs/InP HFETs,” in Proc.8th Int. Indium Phosphide Relat. Mater. Conf., 1996, vol. 1, pp. 68–71.
[10] G. Polacek, “Stable Bias Yields Active MMIC Circulator,” Microw. RF, pp. 132–137, Nov. 1990.
[11] R. Dougherty, “Circulate signals With Active devices on Monolithic Chips,” Microw. RF, pp. 85–87, Jun. 1989.
[12] S. Cheung, T. Halloran, and W. Weedon, “Quasi Active MMIC Circulator,” U.S. Patent 7541890 B2, Jun. 2, 2009.
[13] P. Katzin, Y. Ayasli, L. Reynolds, and B. Bedard, “6 to 18 GHz MMIC Circulators,” Microw. J., pp. 248–256, May 1992.
[14] T. Tokumitsu, S. Hara, T. Takenaka, and M. Aikawa, “Divider and Combiner Line-Unified FET’s as Basic Circuit Founction Modules—Part II,” IEEE Tranactions Microwave Theory and Techniques, vol. 38, no. 9, pp. 1218–1226, Sep. 1990.
[15] Jong C. Park, Jae Y. Park, and Han S. Lee, “ Fully Embedded 2.4GHz LC-Balun into Organic Package Substrate with Series Resonant Tank Circuit,” in IEEE MTT-S International Microwave Symposium Digest, pp. 190-1904 Jun. 2007.
[16] Chin-Shen Lin, Pei-Si Wu, Mei-Chao Yeh, Jia-Shiang Fu, Hong-Yeh Chang, Kun-You Lin, Huei Wang, “Analysis of Multiconductor Coupled-Line Marchand Baluns for Miniature MMIC Design,” IEEE Tranactions Microwave Theory and Techniques, vol. 55, no. 6, pp. 1190-1199, Jun. 2007.
[17] C. Viallon, D. Venturin, J. Graffeuil, and T. A. Parra, “Design of an Original K-band Active Balun With Improved Broadband Balanced Behavior,” IEEE Microwave and Wireless Components Lett., vol. 15, no. 4, pp. 280–282, Apr. 2005.
[18] Bo-Jiun Huang, Bo-Jr Huang, Kun-You Lin, and Huei Wang, “A 2-40-GHz Active Balun Using 0.13 um CMOS Process," IEEE Microwave and Wireless Components Lett., vol. 19, no. 3, pp. 164-166, March 2009.
[19] S. H. Weng, H. Y. Chang and C. C. Chiong, “A DC-21 GHz Low Imbalance Active Balun Using Darlington Cell Technique for High Speed Data Communications,” IEEE Microwave and Wireless Components Lett., vol. 19, no. 11, pp. 728-730, November 2009.
[20] M. Kawashima, T. Nakagawa, and K. Araki, “A Novel Broadband Active Balun,” in Proc.33th Eur. Microw. Conf., Oct. 2003, pp. 495–498.
[21] E. Tiiliharju and K. A. I. Halonen, “An Active Differential Broad-band Phase Splitter for Quadrature-Modulator Applications,” IEEE Tranactions Microwave Theory and Techniques, vol. 53, no. 2, pp. 679–686, Feb. 2005.
[22] M. Ferndahl, and H. O. Vickes, “The Matrix Balun - A Transistor-Based Module for Broadband Applications,” IEEE Tranactions Microwave Theory and Techniques, vol. 57, no. 1, pp. 53-60, Jan. 2009.
[23] Shou-Hsien Weng, Hong-Yeh Chang and Chau-Ching Chiong, “Design of a 0.5-30 GHz Darlington Amplifier for Microwave Broadband Applications,” in IEEE MTT-S International Microwave Symposium Digest, pp.137-140, May 2010.
[24] Hsi-Han Chiang, Fu-Chien Huang, Chao-Shiun Wang and Chorng-Kung Wang, “A 90 nm CMOS V-Band Low-Noise Active Balun With Broadband Phase-Correction Technique,” IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2583-2591, Nov. 2011.
[25] D. H. Lee, J. Han, C. Park and S. Hong, “A CMOS Active Balun Using Bond Wire Inductors and a Gain Boosting Technique,” IEEE Microwave and Wireless Components Lett., vol. 17, no. 9, pp. 676-678, Sep. 2007.
[26] Ta-Tao Hsu and Chien-Nan Kuo, “Low Power 8-GHz Ultra-Wideband Active Balun,” in IEEE SiRF 2006, pp. 365-368.
[27] H. Ma, S. J. Fang, F. Lin, and H. Nakamura, “Novel Active Differential Phase Splitters in RFIC for Wirelss Applications,” IEEE Tranactions Microwave Theory and Techniques, vol. 46, no. 12, pp. 2597-2603, Dec. 1998.
[28] S. Kimura and Y. Imai, “0-40 GHz GaAs MESFET Distributed Baseband Amplifier IC’s for High-Speed Optical Transmission,” IEEE Tranactions Microwave Theory and Techniques, vol. 44, no. 11, pp. 2076-2082, Nov. 1996.
[29] Jun-Chau Chien and Liang-Hung Lu, “40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-um CMOS” IEEE Journal of Solid-Stat Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007.
[30] I. D. Robertson and A. H. Aghvami, “Uitrawideband Biasing of MMIC Distributed Amplifiers Using Improved Active Load,” IET Electronic Letters, vol. 27, no. 21, pp. 1907-1909, Oct. 1991.
[31] Pen-Cheng Huang, Kun-You Lin and Huei Wang, “A 4-17 GHz Darlington Cascode Broadband Medium Power Amplifier in 0.18-um CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, Jan. 2010.
[32] M. Tsai, H. Wang, J. Kuan and C. Chang, “A 70 GHz Cascaded Multistage Distributed Amplifier in 90 nm CMOS Technology,” in Pro. Int. Solid-State Conf., 2005, vol. 1, pp. 402-403.
[33] Jun-De Jin. and Shawn S. H. Hsu, “A 70-GHz Transformer-Peaking Broadband Amplifier in 0.13-um CMOS Technology,” in IEEE MTT-S International Microwave Symposium Digest, pp. 285-288, June 2008.
[34] A. Arbabian and A. M. Niknejad, “A Broadband Distributed Amplifier With Internal Feedback Providing 660 GHz GBW in 90 nm CMOS,” in Pro. Int. Solid-State Conf., San Francisco, CA, USA, 2008, pp. 196-198.
[35] J. Kim and J. F. Buckwalter, “A-DC-102 GHz Broadband Amplifier in 0.12 um SiGe BiCMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Boston, MA, Jun. 2009, pp. 53-56.
[36] L. Rabieirad and S. Mohammadi, “A Duel-Mode Programmable Distributed Amplifier/Mixer,” in IEEE MTT-S International Microwave Symposium Digest, pp. 581-583, 2009.
[37] T. D. Gathman and J. F. Buckwalter, “A Ka-Band High-Pass Distributed Amplifier in 120nm SiFe BiCMOS,” in IEEE MTT-S International Microwave Symposium Digest, pp. 952-955, Jun. 2010.
[38] A. S. Virdee and B. S. Virdee, “A Novel High Efficiency Multioctave Amplifier using Cascaded Reactively Terminated Single-Stage Distributed Amplifiers for EW System Applications,” in IEEE MTT-S International Microwave Symposium Digest, pp. 519-522, 2001.
[39] P. Shastry and E. Cullerton, “A Novel Wideband GaAs FET Source Injected Distributed Mixer,” in Proc.36th Int. Eur. Microw. Conf., Manchester, U.K., Sep. 2006, pp. 1533–1536.
[40] Jiashu Chen and Ali M. Niknejad, “A Stage-Scaled Distributed Power Amplifier Achieving 110GHz Bandwidth and 17.5dBm Peak Output Power,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1749-1756, Aug. 2006.
[41] A. Arbabian and A. Niknejad, “A Tapered Cascaded Multi-stage Distributed Amplifier with 370GHz GBW in 90nm. CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 57-60, Jun. 2008.
[42] Emad Hamidi and Mahmoud Mohammad Taheri, “A Theorectical Comparison between MMIC Distribued and Matrix Amplifiers,” IEEE Asia Pacific Microwave Conference Proceedings, pp. 4-7, Dec. 2005.
[43] Ren-Chieh Liu, To-Po Wang, Liang-Hung Lu, Huei Wang, Sung-Hsiung Wang and Chih-Ping Chao, “An 80GHz Travelling-Wave Amplifier in a 90nm CMOS Technology,” in Pro. Int. Solid-State Conf., NTU, Taiwan, Feb. 2005, pp. 154-155.
[44] 郭南宏, “雙向WiMAX上載分波多工被動光纖網路設計 Bidirectional WiMAX over WDM-PON System Design,” 國立台灣科技大學電子工程系碩士學位論文, 民國九十八年七月.
[45] http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?id=0000093882_A814WT75YE9SZDJ1EI0C9&ct=1, “搭高鐵也能上網? 高鐵展開WiMAX寬頻連網計畫.”
[46] Rodney Waterhouse, Dalma Novak, Milad Alemohammad, Steven Hobbs, Christina Kim, Ampalavanapillai Nirmalathas, Jeffreu Nanzer, Patrick Callahan, Michael Dennis and Thomas Clark, “RF Over Fiber Distribtion Schemes for 60 GHz Wireless Personal Area Network (WPANs)” IEEE Asia Pacific Microwave Conference Proceedings, pp. 1714-1717, Dec. 2011.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2012-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明