博碩士論文 945401003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.149.23.165
姓名 黃耿毅(Kengyi Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於射頻系統之低溫共燒陶瓷被動元件之設計
(Designs on LTCC Passive Components for RF System)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在提出可應用於射頻前端之關鍵零組件,。本文首先提出了一個與低溫陶瓷共燒技術結合之微型寬頻濾波器。藉由外加一耦合電容於傳統的二階耦合線段濾波器中間,並產生傳輸零點且具有86%的傳輸頻寬,為了進一步提升外頻的選擇度。本文增加了寬頻濾波器的階數並使用低溫陶瓷共燒技術來實現,該一提出之寬頻濾波器頻段為3.1至5.1 GHz,最後並實現了四個傳輸零點以確保本濾波器的選擇度。接著本文提出了一多頻段濾波器的設計架構,一個典型的二階耦合線段濾波器被分隔成兩個區塊,其中接地端的耦合線段被設計成為階梯式電路,藉由放置適當的電容器於此一階梯式電路,可以達成多頻濾波器的設計,各個頻段之中心頻率可以被自由的調整而不會互相影響,此一多頻濾波器分別以雙頻濾波器(2.4 and 5.5 GHz)與三頻濾波器(2, 4.1, and 7.2 GHz)展示,並亦使用低溫陶瓷共燒技術來實現此一設計概念。
此外,本文亦展示可應用於射頻前端電路之平衡器,並提出了平衡器選擇度之技巧。藉由這些技巧,此一平衡器增加了三個傳輸零點,可以有效的來加強外頻的選擇度,所需的公式亦被提出,最後並以低溫陶瓷共燒技術來實現此一平衡器,達到微型化與高性能之目的。
更進一步地,本論文更提出了一個適合安裝於無線通訊手持裝置之三頻天線於Wi-Fi (2.4–2.48 and 5.15–5.8 GHz) 與 WiMAX ( 3.3–3.7 GHz ) 應用。為了實現此三頻天線於有限的空見內,兩個L型之單極天線被堆疊於多層印刷電路板,並完成2.4 與 3.5 GHz的輻射功能,進一步再堆疊另一個U型的寄生金屬元件,完成了5.5 GHz頻段之輻射,為了可以達成微型化的目的,除了使用多層印刷電路板製程外,亦使用了兩顆電感來縮短天線的電氣長度同時完成阻抗匹配,此一三頻天線尺寸僅僅為8x8x1.6(mm) ,量測與模擬結果也有良好的一致性,非常適合應用於現代無線通訊裝置之上。
摘要(英) This dissertation focuses on the key components of RF front-end systems for various wireless communication application. A new design scheme for the wideband filters with the low temperature co-fired ceramic (LTCC) technology is proposed in this letter. Based on the traditional second-order combline filter, an extra shunt capacitor is added in the middle of the coupled line, and a new transmission zero is thus obtained. The proposed design not only possesses excellent selectivity at both sides of the passband, the fractional bandwidth can also be as wide as 86%. To validate the design scheme, the proposed technique is applied to the third-order ombline filter and realized by using the LTCC technology. The wide-band filter with passband of 3.1–5.1 GHz is obtained. With four transmission-zeros, the selectivity and out-band rejection of the third-order filter is further improved from those of the second-order designs. A systematic design scheme for multi-band filters is proposed based on the conventional single-band combline filter. In the proposed design, the coupled line in the filter is divided into two sections, and one of the sections is replaced with a ladder circuit consisting of parallel capacitors and series coupled lines. The center frequency and fractional bandwidth of each passband can be adjusted without significantly affecting those of the other passbands. The design scheme is illustrated with a dual-band (2.4 and 5.5 GHz) and a tri-band (2, 4.1, and 7.2 GHz) combline filters. Both designs are realized using low-temperature co-fired ceramic technology. Not only the design procedures are given and explained in detail, experimental validation is also conducted.
In addition, convenient techniques of selectivity enhancement for lump-distributed baluns are proposed in the paper. With these techniques, transmission zeros are introduced by adding circuit components to the balun. First, novel balun circuits which possess a transmission zero in the differential-mode operation are proposed. A shunt capacitor is then added to the balun to provide a mechanism for tuning the position of the zero. To further improve the frequency selectivity, one more transmission zero which appears in both three-port and differential-mode operations is introduced by adding one transmission line and two capacitors to the balun. Not only equations required for circuit designs are derived, also the proposed circuits are realized by using LTCC process and validated by measurements.
Furthermore, this dissertation proposes a triband antenna design for Wi-Fi (2.4–2.48 and 5.15–5.8 GHz) and WiMAX (3.3–3.7 GHz) applications. In order to accommodate the antenna into the limited space, two L-shaped monopoles are stacked on top of each other. These stacked monopoles are used for the radiation in 2.4- and 3.5-GHz bands. Additionally, one parasitic U-shaped strip is placed alongside the stacked monopoles for the radiation in the 5.5-GHz band. Two on-chip inductors are inserted into the monopoles for impedance matching and further miniaturization. The proposed design can be contained in a volume of 8x8x1.6(mm) and built on the printed circuit board. Simulation and measurements are conducted, and both results have proven to be in good agreement.
關鍵字(中) ★ 平衡器
★ 低溫陶瓷共燒
★ 多頻濾波器
★ 寬頻濾波器
★ 三頻天線
關鍵字(英) ★ tri-band antenna
★ LTCC
★ multi-band filters
★ balanced filters
★ wide-band filters
論文目次 中文提要 ……………………………………………………………………………………………………………. i
Abstract …………………………………………………………………………………. ii
誌謝 ……………………………………………………………………………………………………………. iii
Contents …………………………………………………………………………………………………. v
Figures ……………………………………………………………………………………………………………. vi
Tables ……………………………………………………………………………………………………………. viii
Chapter 1 Introduction……………………………………………………. 1
1-1 Motivation……………………………………………………………………………………… 1
1-2 Dissertation Overview………………………………………………………. 2
Chapter 2 Wideband Filter Desig…………………………………. 6
2-1 Introduction………………………………………………………………………………. 6
2-2 Wideband Filter Design……………………………………………………. 7
2-3 Wideband Filter Fabrication and Measurement………… 11
2-4 Summary………………………………………………………………………………………………….. 14
Chapter 3 LTCC Multi-band Filter Design……………..…… 15
3-1 Introduction…………………………………………………………………….………. 15
3-2 Combline Filter Design………………………………………………… 19
3-3 Dual-Band Filter Design and Results………………………….. 23
3-4 Multi-Band Filter Design and Results…………………………. 31
3-5 Summary………………………………………………………………………………………….. 38
Chapter 4 Convenient Techniques of Selectivity Enhancement for LTCC Baluns………………………………………………………….. 40
4-1 Introduction………………………………………………………………………. 40
4-2 Compact Lump-distributed Balun Design………………………….43
4-3 Transmission Zeros of the Balun………………………………………. 48
4-4 Experimental Results……………………………………………………... 53
4-5 Summary……………………………………………………………………………………….. 60
Chapter 5 Conclusions and Future Work……………………………… 61
5-1 Conclusions……………………………………………………………………………… 61
5-2 Future Works………………………………………………………………………... 62
Appendix A Tri-band Inverted-F Antenna With Stacked Branched Monopoles and a Parasitic Strip……………………………….. 64
Reference ……………………………………………………………………………………….. 75
Publication ………………………………..……………………………………………………… 85
參考文獻 [1] G. R. Aiello and G. D. Rogerson, “Ultra-Wideband wireless system,” IEEE Microw. Mag., vol. 4, no. 2, pp. 36–47, Jun. 2003.
[2] C. L. Hsu, F. C. Hsu, and J. T. Kuo, “Microstrip bandpass filter for ultra-wideband (UWB) wireless communications,” in IEEE MTT-S Int. Micro. Symp. Dig., pp. 679–682, Jun. 2005.
[3] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filter using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796–798, Nov. 2005.
[4] C. H. Wu, Y. S. Lin, C. H. Wang, C. H. Chen, “A compact LTCC ultra-wideband bandpass filter using semi-lumped parallel-resonance circuits for spurious suppression,” European Microwave Conference, pp. 532–535, Oct. 2007.
[5] C. W. Tang, C. C. Tseng, H. H. Liang, and S. F. You, “Development of Ultra-Wideband LTCC Filter,” IEEE International Conference on Ultra-Wideband, pp. 320–322, Sept. 2005.
[6] K. Huang, T. Chiu, and H. B. Wu, “Compact LTCC tri-band filter design,” in Proc. Asia–Pacific Microw. Conf., pp. 1-4, Dec. 2007.
[7] C. W. Tang, and S. F. You, “Concurrent design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717–723, Feb. 2006.
[8] H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers theory, design, and applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 288–301, Jan. 2002.
[9] S. -F. R. Chang, W. L. Chen, S. C. Chang, C. K. Tu, C. L. Wei, C.H. Chien, C. H. Tsai, J. Chen, and A. Chen, “A dual-band RF transceiver for multistandard WLAN applications,” IEEE Trans. Microw. Theory Tech., vol.
53, no. 3, pp. 1048–1055, Mar. 2005.
[10] Y. Y. Wang, and S. J. Chung, “A new dual-band antenna for WLAN applications,” in IEEE AP-S Int. Symp., vol. 3, pp. 2611 – 2614, Jun. 2004.
[11] H. Y. D. Yang, “Miniaturized dual-band printed antennas for wireless communications,” in Proc. IEEE AP-S Int. Symp., vol. 1A, pp. 450–453, Jul. 2005.
[12] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 789–792, Jun. 1997.
[13] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417, Dec. 1980.
[14] C.-H. Lee, C.-I. G. Hsu, and H.-K. Jhuang, “Design of a new tri-band microstrip BPF using combined quarter-wavelength SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 594–596, Nov. 2006.
[15] C.-I. G. Hsu, C.-H. Lee, and H.-K. Jhuang, “Design of a novel quadband microstrip BPF using quarter-wavelength stepped-impedance resonators,” Microw. J., vol. 50, no. 2, pp. 102–112, Feb. 2007.
[16] C. Quendo, E. Rius, A. Manchec, Y. Clavet, B. Potelon, J.-F Favennec, and C. Person, “Planar tri-band filter based on dual behavior resonator (DBR),” European Microwave Conf., vol. 1, pp. 4-6, Oct. 2005.
[17] C. Quendo, E. Rius, and C. Person, "An original topology of dual-band filter with transmission zeros", IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1093-1096, Jun. 2003.
[18] T. H. Huang, H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, “A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 360-362, Jun. 2006.
[19] J.-X. Chen, T. Y. Yum, J.-L. Li, and Q. Xue, “Dual-mode dual-band bandpass filter using stacked-loop structure,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 502–504, Sep. 2006.
[20] C. C. Chen, “Dual-band bandpass filter using coupled resonator pairs,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 259–261, Apr. 2005.
[21] C. W. Tang, and S. F. You, “Using the technology of low temperature co-fired ceramic to design the dual-band bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 407–409, July. 2006.
[22] K. C. Lin, C. F. Chang, M. C. Wu, and S. J. Chung, “Dual-bandpass filters with serial configuration using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2321-2328, Jun. 2006.
[23] Y. Zhang, K. A. Zaki, A. J. Piloto, and J. Tallo, "Miniature broadband bandpass filters using double-layer coupled stripline resonators," IEEE Trans. Microwave Theory & Tech., vol. 54, no. 8, pp. 3370-3377, August 2006.
[24] Y. L. Low and R. C. Frye, “The impact of iniaturization and passive component integration in emerging MCM applications,” in IEEE Multi-Chip Module Conf., pp. 27–32,Feb. 1997.
[25] W. Y. Leung, K. K. M. Cheng, and K. L. Wu, “Design and implementation of LTCC filters with enhanced stop-band characteristics for Bluetooth applications,” in Proc. Asia–Pacific Microw. Conf., pp. 1008–1011, Dec. 2001.
[26] A. Matsuzawa, “RF-SoC—Expectations and required conditions,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 245–253, Jan. 2002.
[27] G. L. Matthael, L. Young, and E. M. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures. Norwood, MA: Artech House, 1980.
[28] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave
Applications. New York: Wiley, 2001.
[29] D. M. Pozar, Microwave Engineering, Third Ed. New York: Wiley, 2005.
[30] HFSS v10, Ansoft Corporation, Pittsburgh, PA.
[31] Advanced Design System (ADS) 2005a. Agilent Technol., Palo Alto, CA, 2005.
[32] M. H. Son, S. S. Lee, and Y. J. Kim, “Low-cost realization of ISM band pass filters using integrated combline structures, ” IEEE Radio and Wireless Conf., pp. 261-264, 2000.
[33] Belkin S, “Differential circuit characterization with two-port S-parameters, ” IEEE Microwave Magazine, 7, (6), pp. 86–99, 2006.
[34] Marchand N., “Transmission-line conversion ransformers, ” Electronics, 17, 4, pp. 142–145, Dec 194.
[35] Cloete J. H., “Exact design of the marchand balun, ” Microw. J., 23, (5), pp. 99–102, May 1980.
[36] Nishikawa K., Toyoda I., and Tokumitsu T., “Compact and broadband three-dimensional MMIC balun, ” IEEE Trans. Microw. Theory Tech., 47, (1) , pp. 96–98, Jan 1999.
[37] Yoon Y. J., Lu Y., Frye R. C., Lau M. Y., Smith P. R., Ahlquist L., and Kossives D. P., “Design and characterization of multilayer spiral transmission-line baluns, ” IEEE Trans. Microw. Theory Tech., 47, (9) , pp. 1841–1847, Sep 1999.
[38] Chiou H. K., Lin H. H., and Chang C. Y., “Lumped-element compensated high/low-pass balun design for MMIC double-balanced mixer, ” IEEE Microwave Guided Wave Lett., 7 , pp. 248–250, Aug 1997.
[39] Lew D.W., Park J. S., Ahn D., Kang N. K., Yoo C. S., and Lim J. B., “A design of ceramic chip balun using the multilayer configuration, ” IEEE Trans. Microwave Theory Tech., 49, pp. 220–224, Jan 2001.
[40] Ojha S. P., Branner G. R., and Kumar B. P., “ A miniaturized lumped-distributed balun for modern wireless communication systems, ” in Proc.IEEE Midwest Circuits and Systems Symp., 3, pp. 1347–1350, 1996.
[41] Ang K. S., Leong Y. C., and Lee C. H., “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns, ” IEEE Trans. Microw. Theory Tech., 51, (3), pp. 1009–1017, Mar 2003.
[42] Kravchenko R., Markov K., Orlenko D., Sevskiy G., and Heide P., “Implementation of a miniaturized lumped-distributed balun in balanced filtering for wireless applications, ” in Proc. Eur. Microw. Conf., pp. 1303–1306, 2005.
[43] Guo Y. X., Zhang Z. Y., and Ong L. C., “Design of miniaturized LTCC baluns, ” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1567–1570, Jun 2006.
[44] Fathelbab W. M. and Steer M. B., “New classes of miniaturized planar Marchand baluns, ” IEEE Trans. Microw. Theory Tech., 53, (4), pp. 1211–1220, Apr 2005.
[45] Cho C. and Gupta K. C., “A new design procedure for single-layer and two-layer three-line baluns, ” IEEE Trans. Microw. Theory Tech., 46, (12), pp. 2514–2519, Dec 1998.
[46] Chen K. T., and Chung S. J., “A novel compact balanced-to-unbalanced low-temperature co-fired ceramic bandpass filter with three coupled lines configuration, ” IEEE Trans. Microw. Theory Tech., 56, (7) , pp. 1714–1720, Jul 2008.
[47] Lee H. M., and Tsai C. M., “Exact synthesis of broadband three-line baluns, ” IEEE Trans. Microw. Theory Tech., 57, (1), pp. 140–148, Jan 2009.
[48] Tsai C. L., and Lin Y. S., “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology, ” IEEE Trans. Microw. Theory Tech., 56, (12), pp. 2902–2912, Dec 2008.
[49] High Frequency Structure Simulator (HFSS), version 11.0, Ansoft Corporation [50] Levy R. and Rhode J. D., “A comb-line elliptic filter, ” IEEE Trans. Microw. Theory Tech., 19, (3), pp. 26–29, Jan 1971.
[51] Chen Y. M., Chang S. F., Chang C. C., and Hung T. J., “Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range, ” IEEE Trans. Microw. Theory Tech., 55, (10) , pp. 2191–2199, Oct 2007.
[52] Agilent E5070B/E5071B ENA Series RF Network Analyzers User’s Guide, 2003, Agilent Technologies
[53] J. H. Lu and B. J. Huang, “Planar multi-band monopole antenna with L-shaped parasitic strip for WiMAX application,” Electron. Lett., vol. 46, no. 10, pp. 671–672, May 2010.
[54] J. H. Lu and W. C. Chou, “Planar dual U-shaped monopole antenna with multiband operation for IEEE 802.16e,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1006-1009, 2010.
[55] J. X. Liu and W. Y. Yin, “A compact interdigital capacitor-inserted multiband antenna for wireless communication applications,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 922–925, 2010.
[56] J. Zhu, M. A. Antoniades, and G.V. Eleftheriades, “A compact tri-band monopole antenna with single-cell metamaterial loading,” IEEE Trans. Antennas Propag., vol. 58, pp. 1031–1038, Apr. 2010.
[57] L. Pazin, N. Telzhensky, and Y. Leviatan, “Multi band flat-plate inverted-F antenna for Wi-Fi/WiMAX operation,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 197–200, 2008.
[58] D. H. Lee, A. Chauraya, Y. Vardaxoglou, and W. S. Park, “A compact and low-profile tunable loop antenna integrated with inductors,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 621–624, 2008.
指導教授 丘增杰(Tsenchieh Chiu) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明