博碩士論文 995202026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.250.90
姓名 張育銓(Yu-Chuan Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於SIFT特徵點擷取與延伸樣板嵌入之強健型數位影像浮水印
(A Geometrically Resilient Digital Image Watermarking Scheme Based on SIFT and Extended Template Embedding)
相關論文
★ 基於QT之跨平台無線心率分析系統實現★ 網路電話之額外訊息傳輸機制
★ 針對與運動比賽精彩畫面相關串場效果之偵測★ 植基於向量量化之視訊/影像內容驗證技術
★ 植基於串場效果偵測與內容分析之棒球比賽精華擷取系統★ 以視覺特徵擷取為基礎之影像視訊內容認證技術
★ 使用動態背景補償以偵測與追蹤移動監控畫面之前景物★ 應用於H.264/AVC視訊內容認證之適應式數位浮水印
★ 棒球比賽精華片段擷取分類系統★ 利用H.264/AVC特徵之多攝影機即時追蹤系統
★ 利用隱式型態模式之高速公路前車偵測機制★ 基於時間域與空間域特徵擷取之影片複製偵測機制
★ 結合數位浮水印與興趣區域位元率控制之車行視訊編碼★ 應用於數位智權管理之H.264/AVC視訊加解密暨數位浮水印機制
★ 基於文字與主播偵測之新聞視訊分析系統★ 植基於數位浮水印之H.264/AVC視訊內容驗證機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當嵌入數位浮水印的靜態影像遭到例如旋轉、裁切、縮放,甚至是隨機變形等幾何攻擊時,經常造成數位浮水印偵測的失敗。本研究提出了基於特徵點擷取之強健型數位浮水印方法,來抵抗幾何變形攻擊所產生的同步問題。首先,我們利用尺度不變特徵轉換(Scale-space Invariant Feature Transform)演算法來擷取特徵點作為定位,依據此特徵點位置延伸出大量的局部不變區域,在每個局部不變區域中嵌入浮水印訊號,接著再嵌入解決同步問題的樣板訊號。較大的偵測區域使得浮水印嵌入量獲得提升,並且提高偵測的可信度。在偵測隱藏訊號時,由於影像可能遭受各種攻擊,導致特徵點資訊與原先不同。因此,我們在使用SIFT擷取特徵點後,對於每個特徵點所建構的不變區域參數進行微調整,以尋找最佳的可能嵌入區域。利用延伸樣板解決同步問題後,我們即可從中擷取出數位浮水印資訊。實驗結果顯示我們所提出的浮水印方法對於各種不同的幾何攻擊與訊號處理攻擊,皆具有合理的強健性。
摘要(英) Synchronized watermark detection is an important issue. The embedded watermark may not be detected successfully if the image has undergone such geometrical transformations as rotation, cropping, scaling or even random bending. This research presents a feature-based still image watermarking approach. Scale-Invariant Feature Transform (SIFT) is first applied to locate the interest points, from which we form the invariant regions for watermark embedding. To resist geometrical transformations, the extended synchronization templates, which help to ensure that reasonably large invariant regions will be available for carrying the watermark payload and/or for increasing the confidence of watermark detection, will also be embedded. In the detection phase, after SIFT, the template is first determined locally by adjusting the related affine parameters of the grid to match with the possible hidden template signal so that the watermark can be retrieved afterwards. Experimental results show the feasibility of the proposed method.
關鍵字(中) ★ 幾何變形攻擊
★ 尺度不變特徵點轉換
★ Stirmark
★ 數位浮水印
關鍵字(英) ★ digital watermark
★ StirMark
★ SIFT
★ geometrical transformations
論文目次 論文摘要 I
Abstract II
誌謝 III
Contents IV
List of Figures VI
List of Algorithms IX
List of Tables X
Chapter 1 1
1.1 Motivation of the Research 1
1.2 Contribution of the Research 2
1.3 Thesis Organization 4
Chapter 2 5
2.1 Applications of Digital Watermarking 5
2.2 Review of Related Works 7
Chapter 3 14
3.1 Preprocessing 16
3.1.1 Scale-Space Feature Points Extraction 16
3.1.2 Invariant Area Determination 23
3.2 Signal Embedding 30
3.2.1 Watermark Embedding 30
3.2.2 Template Embedding 33
3.3 Signal Detection 34
3.3.1 Template detection 34
3.3.2 Watermark Detection 40
Chapter 4 41
4.1 Fidelity Test 42
4.2 Robustness Test 46
4.3 Capacity Test 55
4.4 Comparison 59
Chapter 5 63
Reference 64
參考文獻 [1] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, "Digital Watermarking and Steganography," 2007.
[2] M. Barni, "Effectiveness of exhaustive search and template matching against watermark desynchronization," Signal Processing Letters, IEEE, vol. 12, pp. 158-161, 2005.
[3] J. J. K. Ruanaidh and T. Pun, "Rotation, scale and translation invariant spread spectrum digital image watermarking1," Signal processing, vol. 66, pp. 303-317, 1998.
[4] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, "Rotation, scale, and translation resilient watermarking for images," Image Processing, IEEE Transactions on, vol. 10, pp. 767-782, 2001.
[5] D. Zheng, J. Zhao, and A. El Saddik, "RST-invariant digital image watermarking based on log-polar mapping and phase correlation," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, pp. 753-765, 2003.
[6] S. Pereira and T. Pun, "Robust template matching for affine resistant image watermarks," Image Processing, IEEE Transactions on, vol. 9, pp. 1123-1129, 2000.
[7] M. Kutter, G. Teschar Andrew, B. Vasudev, V. M. Bove, and B. Derryberry, "Watermarking resisting to translation, rotation, and scaling," SPIE proceedings series, vol. 3528, pp. 423-431, 1999.
[8] P. C. Su and C. C. J. Kuo, "Synchronized detection of the block-based watermark with invisible grid embedding," in SPIE Photonics West, vol. 4314, pp. 423–431, 2001.
[9] M. Kutter, S. K. Bhattacharjee, and T. Ebrahimi. (1999, 1999) Towards second generation watermarking schemes. Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on. 320-323 vol.1.
[10] H. Alexander, V. Sviatoslav, R. Yuriy, and W. Ping Wah, "The watermark template attack," SPIE proceedings series, vol. 4314, pp. 394-405, 2001.
[11] S. Manjunath B, C. Shekhar, and R. Chellappa, "A new approach to image feature detection with applications," Pattern recognition, vol. 29, pp. 627-640, 1996.
[12] P. Bas, J. M. Chassery, and B. Macq, "Geometrically invariant watermarking using feature points," Image Processing, IEEE Transactions on, vol. 11, pp. 1014-1028, 2002.
[13] J. S. Seo and C. D. Yoo, "Image watermarking based on invariant regions of scale-space representation," Signal Processing, IEEE Transactions on, vol. 54, pp. 1537-1549, 2006.
[14] G. Xinbo, D. Cheng, L. Xuelong, and T. Dacheng, "Geometric Distortion Insensitive Image Watermarking in Affine Covariant Regions," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 40, pp. 278-286, 2010.
[15] W. Xiangyang, W. Jun, and N. Panpan, "A New Digital Image Watermarking Algorithm Resilient to Desynchronization Attacks," Information Forensics and Security, IEEE Transactions on, vol. 2, pp. 655-663, 2007.
[16] Z. Dong, W. Sha, and Z. Jiying, "RST Invariant Image Watermarking Algorithm With Mathematical Modeling and Analysis of the Watermarking Processes," Image Processing, IEEE Transactions on, vol. 18, pp. 1055-1068, 2009.
[17] T. Jen-Sheng, H. Win-Bin, and K. Yau-Hwang, "On the Selection of Optimal Feature Region Set for Robust Digital Image Watermarking," Image Processing, IEEE Transactions on, vol. 20, pp. 735-743, 2011.
[18] C. Harris and M. Stephens, "A combined corner and edge detector," in Alvey vision conference, vol. 15, p. 50, 1988.
[19] G. Lowe D, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[20] K. Mikolajczyk and C. Schmid, "Scale & affine invariant interest point detectors," International Journal of Computer Vision, vol. 60, pp. 63-86, 2004.
[21] P. F. A. P, S. Martin, R. Frederic, D. Jana, F. Caroline, F. Nazim, and W. Ping Wah, "A public automated web-based evaluation service for watermarking schemes: StirMark benchmark," SPIE proceedings series, vol. 4314, pp. 575-584, 2001.
[22] A. B. Watson, "Visually optimal DCT quantization matrices for individual images," in Data Compression Conference, 1993. DCC ’’93., 1993, pp. 178-187.
[23] S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun, "A stochastic approach to content adaptive digital image watermarking," in Information Hiding, pp. 211-236, 2000.
指導教授 蘇柏齊(Po-Chyi Su) 審核日期 2012-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明