博碩士論文 93541013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.225.156.159
姓名 邱健榮(Chien-Jung Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具自我學習能力之智慧型控制系統設計
(Design of an intelligent control system with online learning algorithms)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般控制器設計需要事先知道受控系統方程式,但該方程式往往很難獲得,本論文提出了多種智慧型控制系統的設計方法,將適應性控制、類神經網路控制與滑動模式控制等的技巧結合應用在控制系統參數學習能力上。首先在適應性比例積分微分控制器設計方面,透過最陡坡降法調整法則達到線上調整控制器增益參數。在適應性類神經網路控制器設計方面,則提出回饋型小波類神經網路適應性控制、輻狀基底類神經網路適應性控制與模糊小波類神經網路適應性控制系統,分別利用了最陡坡降法調整法則與李亞普諾夫穩定定理論推導出系統參數的學習法則,因此可保證經由線上調整系統參數後均能使得系統趨向於穩定,並提出PID型式學習法則加快追蹤誤差與系統參數收斂速度。進一步,本文提出一動態滑動模式類神經網路適應性控制器用來解決控制訊號抖動缺點。最後,本文將所開發之多種智慧型控制方法分別運用於感應伺服馬達定位控制、無刷直流馬達定位控制、混沌控制系統以及混沌系統同步控制,經由模擬或實驗結果均可發現所提出方法之可行性。
摘要(英) The traditional control system designs are always based on the system dynamic equations; however, it is difficult to be described as the plants are too complex. This dissertation proposes several intelligent control systems based on the adaptive control, sliding-mode control and neural network control technologies. For the adaptive proportional integral derivative (PID) controller design, the adaptive PID controller can automatically tune the controller gain factors based on the gradient descent method. For the adaptive neural network controllers design, a recurrent-wavelet-neural-network-based adaptive control, RBF-neural-network-based adaptive control and fuzzy-wavelet-neural-network-based adaptive control methods are proposed. In these control system designs, an online parameter tuning methodology, using the gradient descent method or the Lyapunov stability theorem, is developed to increase the learning capability and to guarantee the system’s stability. Moreover, a PID type adaptation tuning mechanism is derived to speed up the convergence of the tracking error and controller parameters. Furthermore, the dynamic-sliding-mode-neural-network-based adaptive control design method is developed with dynamic learning rate which is proposed to reduce the chattering phenomenon. Finally, the developed control system design methods are applied to some control system applications, such as induction servomotor system, brushless DC motor system, chaotic system and chaotic synchronization system. The simulation and experimental results have demonstrated that the effectiveness of the proposed design methods.
關鍵字(中) ★ 模糊小波類神經網路
★ 回饋型小波類神經網路
★ 輻狀基底類神經網路
關鍵字(英) ★ fuzzy wavelet neural network
★ recurrent wavelet neural network
★ radial basis function neural network
論文目次 中文摘要 i
Abstract ii
誌謝 iii
Content iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 General Remark and Overview of Previous Work 1
1.2 Objectives and Organization of the Dissertation 2
Chapter 2 APIDC with Fuzzy Compensator 4
2.1 Overview 4
2.2 Design of APIDC System 5
2.2.1 PID Controller Design 6
2.2.2 Fuzzy Compensator Design 8
2.2.3 Stability Analysis of APIDC System 9
2.3 Experimental Results 12
2.3.1 Problem Statement 12
2.3.2 Experimental Results of APIDC System 13
2.4 Summary 15
Chapter 3 PI-ADSNC with Fuzzy Compensator 19
3.1 Overview 19
3.2 Problem Statement 19
3.2.1 SMC System Design 20
3.2.2 DSMC System Design 22
3.3 Design of PI-ADSNC System 23
3.4 Experimental Results 29
3.5 Summary 30
Chapter 4 PID-AFWNNC with Saturation Compensator 35
4.1 Overview 35
4.2 Description Fuzzy Wavelet Neural Network 36
4.3 Design of PID-AFWNNC System 38
4.4 Problem Statement 43
4.5 Simulation and Experimental Results 44
4.6 Summary 46
Chapter 5 ADRBFNC with Dynamical Learning Rate 54
5.1 Overview 54
5.2 Dynamic Sliding-Mode Controller Design 55
5.3 Design of ADRBFNC system 58
5.3.1 Online Learning Algorithm 59
5.3.2 Dynamical Learning Rate Parameters 60
5.3.3 Switching Compensator Design 66
5.4 Simulation Results 68
5.5 Summary 70
Chapter 6 Conclusions and Suggestions for Future Research 81
6.1 Conclusions 81
6.2 Suggestions for Future Research 82
References 84
Biographical Sketch and Publication List 92
參考文獻 [1] Slotine, J. J. E. and Li, W. P., Applied nonlinear control., Englewood Cliffs. NJ: Prentice Hall, 1991.
[2] Hang, C. C., Astrom, K. J. and Ho, W. K., “Refinements of the ziegler-nichols tuning formula”, IEE Proc. Contr. Theory Appl., Vol. 138, no. 2, pp. 111-118, 1991.
[3] Chang, W. D., Hwang, R. C. and Hsieh, J. G., “A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach”, Journal of Process Contr., Vol. 12, no. 2, pp. 233-242, 2002.
[4] Kansha, Y., Jia, L. and Chiu, M. S., “Self-tuning PID controllers based on the Lyapunov approach”, Chemical Eng. Science, Vol. 63, no. 10, pp. 2732-2740, 2008.
[5] Chang, E. D. and Yan, J. J., “Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems”, Chaos, Soli and Frac., Vol. 26, no. 1, pp. 167-175, 2005.
[6] Ahn, K. K. and Truong, D. Q., “Online tuning fuzzy PID controller using robust extended Kalman filter”, Journal of Process Contr., Vol. 19, no. 6, pp. 1011-1023, 2009.
[7] Ren, T. J. Chen, T. C. and Chen, C. J., “Motion control for a two-wheeled vehicle using a self-tuning PID controller”, Contr. Eng. Practice, Vol. 16, no. 3, pp. 365-375, 2008.
[8] Narendra, K. S. and Parthasarathy, K., “Identification and control of dynamical systems using neural networks”, IEEE Trans. Neural Netw., Vol. 1, no. 1, pp. 4-26, 1990.
[9] Chen, C. H., Lin, C. M. and Chen, T. Y., “Intelligent adaptive control for MIMO uncertain nonlinear systems”, Expert Syst. Appl., Vol. 35, no. 3, pp. 865-877, 2008.
[10] Elmas, C., Ustun, O. and Sayan, H. H., “A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor driver”, Expert Syst. Appl., Vol. 34, no. 1, pp. 657-664, 2008.
[11] Hanbay, D., Turkoglu, I. and Demir, Y., “An expert system based on wavelet decomposition and neural network for modeling Chua’s circuit”, Expert Syst. Appl., Vol. 34, no. 4, pp. 2278-2283, 2008.
[12] Zhao, T., “RBFN-based decentralized adaptive control of a class of large-scale non-affine nonlinear systems”, Neural Computing and Appl., Vol. 17, no. 4, pp. 357-364, 2008.
[13] Peng, Y. F., “Adaptive intelligent backstepping longitudinal control of vehicle platoons using output recurrent cerebellar model articulation controller”, Expert Syst. Appl., Vol. 37, no. 3, pp. 2016-2027, 2010.
[14] Zhang, Q., “Using wavelet network in nonparametric estimation”, IEEE Trans. Neural Netw., Vol. 8, no. 2, pp. 227-236, 1997.
[15] Billings, S. A. and Wei, H. L., “A new class of wavelet networks for nonlinear system identification”, IEEE Trans. Neural Netw., Vol. 16, no. 4, pp. 862-874, 2005.
[16] Chauhan, N., Ravi, V. and Karthik, C. D., “Differential evolution trained wavelet neural networks: application to bankruptcy prediction in banks”, Expert Syst. Appl., Vol. 36, no. 4, pp. 7659-7665, 2009.
[17] Lin, F. J., Chen, S. Y. and Hung, Y. C., “FPGA-based recurrent wavelet neural network control system for linear ultrasonic motor”, IET Electr. Power Appl., Vol. 3, no. 4, pp. 298-312, 2009.
[18] Lin, F. J., Hung, Y. C. and Chen, S. Y., “Field-programmable gate array-based intelligent dynamic sliding-mode control using recurrent wavelet neural network for linear ultrasonic motor”, IET Control Theory and Appl., Vol. 4, no. 9, pp. 1511-1532, 2010.
[19] Yilmaz, S. and Oysal, Y., “Fuzzy wavelet neural network models for prediction and identification of dynamical systems”, IEEE Trans. Neural Netw., Vol. 21, no. 10, 2010.
[20] Tzeng , S. T., “Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification”, Fuzzy Sets and Syst., Vol. 161, no. 19, pp. 2585-2596, 2010.
[21] Ho, D., Zhang, P. A. and Xu, J., “Fuzzy wavelet networks for function learning”, IEEE Trans. Fuzzy Syst., Vol. 9, no. 1, pp. 200-211, 2001.
[22] Tzeng, S. T., “Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification”, Fuzzy Sets and Syst., Vol. 161, no. 19, pp. 2585-2596, 2010.
[23] Srivastava, S., Singh, M., Hanmandlu, M. and Jha, A. N., “New fuzzy wavelet neural networks for system identification and control”, Applied Soft Comp., Vol. 6, no. 1, pp. 1-17, 2005.
[24] Lin, C. K., “H∞ reinforcement learning control of robot manipulators using fuzzy wavelet networks”, Fuzzy Sets and Syst., Vol. 160, no. 12, pp. 1765-1786, 2009.
[25] Abiyev, R. H. and Kaynak, O., “Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study”, IEEE Trans. Ind. Electron., Vol. 55, no. 8, pp. 3133-3140, 2008.
[26] Lin, C. K., “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks”, IEEE Trans. Fuzzy Syst., Vol. 14, no. 6, pp. 849-859, 2006.
[27] Lin, C. M. and Peng, Y. F., “Adaptive CMAC-based supervisory control for uncertain nonlinear systems”, IEEE Trans. Syst., Man, Cyber., Pt-B: Cyber., Vol. 34, no. 2, pp. 1248-1260, 2004.
[28] Yeh, M. F. and Tsai, C. H., “Standalone CMAC control system with online learning ability”, IEEE Trans. Syst., Man, Cyber., Pt-B: Cyber., Vol. 40, no. 1, pp. 43-53, 2010.
[29] Wai, R. J. and Tu, C. H., “Development of Lyapunov-based genetic algorithm control for linear piezoelectric ceramic motor drive”, IEEE Trans. Ind. Electron., Vol. 54, no. 5, pp. 2566-2582, 2007.
[30] Lin, F. J., Chen, S. Y., Teng, L. T. and Chu, H., “A recurrent FL-based fuzzy neural network controller with improved particle swarm optimization for linear synchronous motor drive”, IEEE Trans. Magnetics, Vol. 45, no. 8, pp. 3151-3165, 2009.
[31] Wang, C. H., Liu, H. L. and Lin, C. T., “Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm”, IEEE Trans. Syst., Man, Cyber., Pt-B: Cyber., Vol. 31, no. 3, 2001.
[32] Peng, Y. F. and Lin, C. M., “Adaptive recurrent cerebellar model articulation controller for linear ultrasonic motor with optimal learning rates”, Neurocomputing, Vol. 70, no. 16, pp. 2626-2637, 2007.
[33] Tsai, J. Z., Hsu, C. F. and Chiu, C. J., “Auto-tuning PID controller design using a sliding-mode approach for DC servomotors”, International Journal of Intelligent Computing and Cybernetics, Vol. 4, no. 1, pp. 93-110, 2011.
[34] Tsai, J. Z., Hsu, C. F., Chiu, C. J. and Peng, K. L., “FPGA-based adaptive dynamic sliding-mode neural control for a brushless DC motor”, Asian Journal of Control, Vol. 13, no. 6, pp. 845–857, 2011.
[35] Hsu, C. F., Chiu, C. J., Wang, C. H. and Tsai, J. Z., “Adaptive fuzzy wavelet neural network control for a class of nonlinear systems using sliding-mode approach”, International Journal of Computational Intelligence in Control, Vol. 2, no. 2, pp. 37-47, 2010.
[36] Hsu, C. F., Chiu, C. J. and Tsai, J. Z., “Master-slave chaos synchronization using adaptive dynamic sliding-mode neural control system”, Int. J. Innov. Comput. I., Vol. 8, no. 1, pp. 121-138, 2012.
[37] Santos, M. and Dexter, A. L., “Control of a cryogenic process using a fuzzy PID scheduler”, Contr. Eng. Practice, Vol. 10, no. 10, pp. 1147-1152, 2002.
[38] Choi, B. J., Kwak, S. W. and Kim, B. K., “Design of a single-input fuzzy logic controller and its properties”, Fuzzy Sets and Syst., Vol. 106, no. 3, pp. 299-308, 1999.
[39] Yuan, X. and Wang, Y., “Neural networks based self-learning PID control of electronic throttle”, Nonlinear Dyn., Vol. 55, no. 4, pp. 385-393, 2008.
[40] Cong, S. and Liang, Y., “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems”, IEEE Trans. Ind. Electron., Vol. 56, no. 10, pp. 3872-3879, 2009.
[41] Gargari, E.A., Hashemzadeh, F., Rajabioun, R. and Lucas, C., “Colonial competitive algorithm; A novel approach for PID controller design in MIMO distillation column process”, International Journal of Intelligent Computing and Cybernetics, Vol. 1, no. 3, pp. 337-355, 2008.
[42] Juang, J. G., Huang, M. T. and Liu, W. K., “PID control using presearched genetic algorithms for a MIMO system”, IEEE Trans. Syst., Man, Cyber.Pt-C: Appl. Rev., Vol. 38, no. 5, pp. 716-727, 2008.
[43] Coelho, L. S. and Bernert, D. L. A., “PID control design for chaotic synchronization using a tribes optimization approach”, Chaos, Soli and Frac., Vol. 42, no. 1, pp. 634-640, 2009.
[44] Yu, D. L., Chang, T. K. and Yu, D. W., “A stable self-learning PID control for multivariable time varying systems”. Contr. Eng. Practice, Vol. 15, no. 12, pp. 1577-1587, 2007.
[45] Sousa, C. D., Hemerly, E. M. and Galvão, R. K. H., “Adaptive control for mobile robot using wavelet networks”, IEEE Trans. Syst., Man, Cyber., Pt-B: Cyber., Vol. 32, no. 4, pp. 493-504, 2002.
[46] Lin, C. M. and Hsu, C. F., “Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings”, IEEE Trans. Fuzzy Syst., Vol. 12, no. 5, pp. 733-742, 2004.
[47] Wai, R. J., “Fuzzy sliding-mode control using adaptive tuning technique”, IEEE Trans. Ind. Electron., Vol. 54, no. 1, pp. 586-594, 2007.
[48] Novotny, D. W. and Lipo, T. A., Vector Control and Dynamics of AC Drives., Oxford University Press, New York, 1996.
[49] Lin, C. T. and Lee, C. S. G., Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems., Englewood Cliffs, NJ: Prentice-Hall, 1996.
[50] Kumarawadu, S. and Lee, T. T., “Neuroadaptive combined lateral and longitudinal control of highway vehicles using RBF networks”, IEEE Trans. Intell. Transp. Syst., Vol. 7, no. 4, pp. 500-512 , 2006.
[51] Seshagiri, S. and Khail, H. K., “Output feedback control of nonlinear systems using RBF neural networks”, IEEE Trans. Neural Netw., Vol. 11, no. 1, pp. 69-79, 2000.
[52] Li, Y., Qiang, S., Zhuang, X. and Kaynak, O., “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks”, IEEE Trans. Neural Netw., Vol. 15, no. 3, pp. 693-701, 2004.
[53] Kumar, R., Ganguli, R. and Omkar, S. N., “Rotorcraft parameter estimation using radial basis function neural network”, Appl. Math. Comp., Vol. 216, no. 2, pp.584-597, 2010.
[54] Karami, A. and Mohammadi, M. S., “Radial basis function neural network for power system load-flow”, International Jour. Electrical Power and Energy Syst., Vol. 30, no. 1, pp.60-66, 2008.
[55] Sarimveis, H., Doganis, P. and Alexandridis, A., “A classification technique based on radial basis function neural networks”, Advances in Engineering Soft., Vol. 37, no. 4, pp. 218-221, 2006.
[56] Bortman, M. and Aladjem, M., “A growing and pruning method for radial basis function networks”, IEEE Trans. Neural Netw., Vol. 20, no. 6, pp. 1039-1045, 2009.
[57] Meng, K., Dong, Z.Y. and Wong, K.P., “Self-adaptive radial basis function neural network for short-term electricity price forecasting”, IET Generation, Transm. and Dist., Vol. 3, no. 4, pp. 325-335, 2009.
[58] Liang, D. and Ding, W., “Modelling and predicting of a switched reluctance motor drive using radial basis function network-based adaptive fuzzy system”, IET Electr. Power Appl., Vol. 3, no. 3, pp. 218-230, 2009.
[59] Lin, C. K., “Adaptive tracking controller design for robotic systems using Gaussian wavelet networks”, IEE Proc. Contr. Theory Appl., Vol. 149, no. 4, pp. 316-322, 2002.
[60] Utkin, V. I., Sliding modes and theirs applications in variable structure systems., MIR Editors, Moscow, 1978.
[61] Hsu, C. F., Chung, C. M., Lin, C. M. and Hsu, C. Y., “Adaptive CMAC neural control of chaotic systems with a PI-type learning algorithm”, Expert Syst. Appl., Vol. 36, no. 9, pp. 11836-11843, 2009.
[62] Park, J. H., Seo, S. J. and Park, G. T., “Robust adaptive fuzzy controller for nonlinear system using estimation of bounds for approximation errors”, Fuzzy Sets and Syst., Vol. 133, no. 1, pp. 19-36, 2003.
[63] Hsu, C. F., Lin, C. M. and Lee, T. T., “Wavelet adaptive backstepping control for a class of nonlinear systems”, IEEE Trans. Neural Netw., Vol. 17, no. 5, pp. 1175-1183, 2006.
[64] Lin, F. J., Shieh, H. J. and Huang, P. K., “Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism”, IEEE Tran. Neural Netw., Vol. 17, no. 2, pp. 432-444, 2006.
[65] Hsu, C. F., “Intelligent position tracking control for LCM drive using stable online self-constructing recurrent neural network controller with bound architecture”, Contr. Eng. Practice, Vol. 17, no. 6, pp. 714-722, 2009.
[66] Khan, M. A. S. K. and Rahman, M. A., “Implementation of a new wavelet controller for interior permanent-magnet motor drives”, IEEE Trans. Ind. Appl., Vol. 44, no. 6, pp. 1957-1965, 2008.
[67] Zekri, M., Sadri, S. and Sheikholeslam, F., “Adaptive fuzzy wavelet network control design for nonlinear systems”, Fuzzy Sets and Syst., Vol. 159, no. 20, pp. 2668-2695, 2008.
[68] Golea, N., Golea, A. and Benmahammed, K., “Fuzzy model reference adaptive control”, IEEE Trans. Fuzzy Syst., Vol. 10, no. 4, pp. 436-444, 2002.
[69] Peng, Y. F. and Hsu, C. F., “Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks”, Chaos, Soli. and Frac., Vol. 41, no. 3, pp. 1377-1389, 2009.
[70] Chen, H. K., “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping”, Journal of Sound Vibr., Vol. 255, no. 4, pp. 719-740, 2002.
[71] Yin, C., Zhong, S. M. and Chen, W. F., “Design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities”, Comm. in Nonlinear Science and Num. Simulation, Vol. 16, no. 3, pp. 1632-1639, 2011.
[72] Lee, S. H., Kapila, V., Porfiri, M. and Panda, A., “Master–slave synchronization of continuously and intermittently coupled sampled-data chaotic oscillators”, Comm. in Nonlinear Science and Num. Simulation, Vol. 15, no. 12, pp. 4100-4113, 2010.
[73] Wang, Z., “Chaos synchronization of an energy resource system based on linear control”, Nonlinear Analysis: Real World Appl., Vol. 11, no. 5, pp. 3336-3343, 2010.
[74] Kuo, C. L., “Design of a fuzzy sliding-mode synchronization controller for two different chaos systems”, Computers and Math. with Appl., Vol. 61, no. 8, pp. 2090-2095, 2011.
[75] Lam, H. K. and Seneviratne, L. D., “Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach”, IEEE Trans. on Circuits and Syst. I: Regular Papers, Vol. 55, no. 3, pp. 883-892, 2008.
[76] Antonio, L. and Arturo, Z. R., “Adaptive Tracking Control of Chaotic Systems With Applications to Synchronization”, IEEE Trans. on Circuits and Syst. I: Regular Papers, Vol. 54, no. 9, pp. 2019-2029, 2007.
[77] Vicente, P. V., Arimoto, S., Liu, Y. H., Hirzinger, G. and Akella, P., “Dynamic sliding PID control for tracking of robot manipulators: theory and experiments”, IEEE Trans. Robotics and Auto., Vol. 19, no. 6, pp. 967-976, 2003.
指導教授 許駿飛、蔡章仁
(Chun-Fei Hsu、Jang-Zern Tsai)
審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明