博碩士論文 995201090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.133.108.224
姓名 張立昂(Li-Ang Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
(Detection of gazed target in an phase-tagged SSVEP-based BCI using the combination of Gaussian Mixture Model and EM method)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,許多研究針對穩態視覺誘發電位(Stead-State Visual Evoked Potential, SSVEP)之大腦人機介面(Brain Computer Interface, BCI)系統進行設計,其中一種引人注目的系統,使用高頻率的相位編碼閃光技術,稱為相位編碼穩態視覺腦波人機介面。為了能改善相位編碼穩態視覺腦波人機介面在辨識方法上的速度與正確率,本研究提出使用高斯混合模型(Gaussian Mixture Model, GMM)與最大期望演算法(Expected-Maximization Algorithm, EM Algorithm)來達到目標。
本研究針對六名年齡介於22到27歲的受測者進行實驗。使用22Hz單一頻率配合四種相位閃光進行測試。使用者Oz得到的腦電波先經過濾波器濾波,接著依照觸發事件進行切割,再使用傅立葉轉換計算閃光頻率的振幅與相位並轉換為角度。演算法訓練過程利用高斯混合模型(GMM)與最大期望演算法(EM Algorithm)來建立最適合使用者的分類器;實際使用時,則利用柯爾莫諾夫-斯米爾諾夫檢定(Kolmogorov-Smirnov test, KS test) 進行有效資料區段選擇,如果通過檢定,則放入高斯混合模型中判斷使用者所注視的選項。本系統的實驗結果顯示,六位受測者使用本系統的正確率為92.45±4.36%,下達指令時間為1.17±0.42s秒/指令。
摘要(英) In recent year, several research groups have proposed novel techniques to improve the performance of Steady-State Visual Evoked Potential based Brain Computer Interface (SSVEP based BCI). One SSVEP-based system, using high-frequency phase-tagged flickers, denoted as phase-tagged SSVEP-based BCI, has drawn great attention. In the present study, we utilize the combination of Gaussian Mixture Model (GMM) and Expected Maximization Algorithm (EM Algorithm) to improve the speed and accuracy in phase-tagged SSVEP-based BCI system.
Six subjects, aged from 22 to 27 years, were recrited in our study. Four visual flickers, flashing at 22 Hz, with phase tagged at 0°, 90°, 180°, and 270°, were utilized as visual stimuli to induce SSVEPs. EEG signals recorded from Oz channel were filtered and segmented into epochs. The phase and amplitude information of each epoch were computed by means of Fourier method. In the system training process, we have to use GMM and EM Algorithm to establish customized classifier for each subject. In the system practice process, effective epochs were detected using Kolmogorov-Smirnov test (KS test), and only those effective epochs were subjected to the following gaze-target detections. Our results showed, the accuracies of six subjects were between the percent of 87% to 97% and the command transfer rates were between 0.68 to 1.74 second per command.
關鍵字(中) ★ 穩態視覺誘發電位
★ 高斯混合模型
★ 最大期望值法
★ 大腦人機介面
關鍵字(英) ★ BCI
★ SSVEP
★ Gaussian mixture model
★ EM algorithm
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 大腦人機介面 5
第二章 視覺誘發電位腦波生理 6
2.1 視覺誘發電位 6
2.2 圖形視覺誘發電位 8
2.3 瞬時閃光視覺誘發電位 10
2.4 穩態視覺誘發電位 11
第三章 研究方法與系統架構 15
3.1 相位編碼SSVEP特徵 15
3.2 高斯混合模型 16
3.3 最大期望演算法 17
3.4 柯爾莫諾夫-斯米爾諾夫檢定 19
3.5 應用高斯混合模型與最大期望法於選項判斷 20
3.6 系統架構 29
3.7 刺激光源設計 31
3.8 傳統選項辨識方法 33
第四章 實驗結果與比較 40
4.1 實驗設計 40
4.2 傳統選項判斷流程 41
4.3 結合高斯混合模型與最大期望值法判斷流程 55
4.4 實驗結果與比較 62
第五章 結論與未來展望 67
參考目錄 69
參考文獻 [1] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, “Brain–Computer Interfaces Based on the Steady-State Visual-Evoked Response”, IEEE Transactions on Rehabilitation Engineering, Vol. 8, No. 2, June 2000.
[2] X. Gao, D. Xu, M. Cheng, and S. Gao,” A BCI-Based Environmental Controller for the Motion-Disabled”, IEEE Transactions on Neural Systems And Rehabilitation Engineering, Vol. 11, No. 2, June 2003.
[3] G. R. Müller-Putz*, Member, IEEE, and G. Pfurtscheller, Member, IEEE,” Control of an Electrical Prosthesis With an SSVEP-Based BCI”, IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, January 2008.
[4] M. A. Lopez-Gordo • A. Prieto • F. Pelayo • C. Morillas,” Use of Phase in Brain–Computer Interfaces based on Steady-State Visual Evoked Potentials”, Neural Process Lett (2010) 32:1–9 DOI 10.1007/s11063-010-9139-8.
[5] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier and M. Pregenzer, “Current Trends in Graz Brain-Computer Interface (BCI) Research,” IEEE Trans. Rehabil. Eng., Vol. 8, No. 2, June, 2000.
[6] E. Donchin, K. M. Spencer and R. Wijesinghe, “The mental prosthesis: assessing the speed of a P300-based brain-computer interface,” IEEE Trans. Rehabil. Eng., Vol. 8, No. 2,, June 2000.
[7] E. Sutter, “The Brain Response Interface: Communication through Visually-Induced Electrical Brain Responses,” J. Micropomput. Applicat. , Vol. 15, No. 1, 1992.
[8] P. L. Lee, C. H. Wu, J. C. Hsieh, and Y. T. Wu, "Visual Evoked Potential Actuated Braincomputer Interface: A Brain-Actuated Cursor System", Electronics Letters, Vol. 41, 2005.
[9] M. Cheng, X. Gao, S. Gao and D. Xu, “Design and Implementation of A Brain-Computer Interface with High Transfer rates,” IEEE Trans. Biomed. Eng., Vol. 49, No. 10, October 2002.
[10] E. American, "Society, Electrode Position Nomenclature Committee: Guideline thirteen: Guidelines for Standard Electrode Position Nomenclature", J Clin Neurophysiol, Vol. 11, 1994.
[11] E.E. Sutter, "The Brain Response Interface: Communication through Visually-Induced Electrical Brain Response," Journal of Microcomputer Applications, Vol. 15, 1992.
[12] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder and Vaegan, “Visual Evoked Potentials Standard,” Doc. Ophthalmol., Vol. 108, No. 2, March 2004.
[13] Y.J. Wang, R.P. Wang, X.R. Gao, B. Hong, and S.K. Gao, "A Practical VEP-Based Brain-Computer Interface," IEEE Trans. Rehab. Eng., Vol. 14, 2006.
[14] P. L. Lee, J. J. Sie, Y. J. Liu, C. H. Wu, M. H. Lee, C. H. Shu, P. H. Li, C. W. Sun and K. K. Shyu, “An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System,” Ann. Biomed. Eng., Vol. 38, No. 7, July 2010.
[15] 鐘欣芳,直方圖均化應用於分類器之模擬分析,國立台灣科技大學,2011。
[16] C. Plant, C. B. ohm,” Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates”, 2010 IEEE International Conference on Data Mining Workshops.
[17] N. Alldrin, A. Smith, D. Turnbull,” Clustering with EM and K-Means”
取自http://cseweb.ucsd.edu/~atsmith/project1_253.pdf
[18] Section 13 Kolmogorov-Smirnov Test.
取自http:// ocw.mit.edu/courses/mathematics/18-443 -statistics-for-applications-fall-2006/ lecture-notes/lecture14.pdf
[19] H.W. Lilliefors (1967). "On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown". Journal of The American Statistical Association 62 (318): 399-402.
[20] H.W. Lilliefors (1969). "On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown". Journal of the American Statistical Association 64 (325): 387-389.
[21] 謝俊傑,多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面,國立中央大學,碩士論文,2007。
[22] Microchip company "dsPIC30F4013 Data Sheet",2007.
取自http://www.microchip.com/downloads/en/DeviceDoc/70135E.pdf.
[23] C. Jia, X. Gao, Member, IEEE, B. Hong, Member, IEEE, and S. Gao*, Fellow, IEEE,” Frequency and Phase Mixed Coding in SSVEP-Based Brain–Computer Interface”, IEEE Transactions on Biomedical Engineering, Vol. 58, No. 1, January 2011
指導教授 李柏磊 審核日期 2012-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明