博碩士論文 995201001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.145.102.187
姓名 林惠鈴(Hui-Ling Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 增強型氮化鋁銦/氮化鎵/氮化鋁鎵/氮化鎵金屬-絕緣體-半導體場效電晶體之研製
(Fabrication and Characterization of Enhancement-mode AlInN/GaN/AlGaN/GaN Metal-Insulator-Semiconductor Field Effect Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用氮化鎵取代傳統矽材料製作功率元件,可以大幅降低元件切換時的能量損耗,而製作增強型氮化鎵場效電晶體,是目前氮化鎵功率場效電晶體的趨勢。在此研究中我們設計一新穎的常關型氮化鎵金絕半場效電晶體,利用氮化鋁銦(AlInN)及氮化鋁鎵(AlGaN)形成雙通道結構,搭配閘極掘入蝕刻與原子層沉積(Atomic Layer Deposition, ALD)之氧化鋁(Al2O3),實現常關型、低導通電阻、高導通電流之特性。
我們利用一維Poisson 能帶模擬軟體來設計增強型場效電晶體結構,並使用有機金屬磊晶法成長此結構,在LSD為28 um,Lg為3 um的元件上實現之常開型AlInN 蕭基閘極電晶體,其臨界電壓為-5.2 V、操作電流達260 mA/mm,崩潰電壓高達1,030 V,且漏電流為0.4 mA;而常關型AlInN金絕半電晶體在同樣的元件尺寸下,其臨界電壓可高達3 V、操作電流達到175 mA/mm、閘極偏壓10 V時漏電流在10-6 A/mm等級,同時20 nm 厚的Al2O3閘極可承受電壓達正負13 V。研究結果顯示此常關型功率元件具有相當高的應用潛力。
摘要(英) GaN-based power devices are under intensive investigations to replace their silicon counterparts for low switching loss. Currently, the development of normally-off GaN field-effect transistors (FETs) is the mainstream of this research area. In this study, we successfully demonstrate normally-off, low on-resistance and high drain current characteristics by using a novel AlInN/AlGaN double channel structure with recessed gate and atomic layer deposition (ALD) Al2O3 process technology.
1D Poisson simulation on band diagram is used to design the novel FET structure. Metal organic chemical vapor deposition (MOCVD) is used to grow the AlInN/GaN/AlGaN/GaN double channel structure on sapphire substrate with an AlN-based buffer layer. For normally-on Schottky gate AlInN FETs with LDS/LG/WG of 28/ 3/ 200 um, Vth of -5.2 V, drain current density of 260 mA/mm, and record-high breakdown voltage up to 1,030 V with leakage current of 0.4 mA are achieved. In contrast, the normally-off MISFETs exhibit threshold voltage as high as 3 V with drain current density of 175 mA/mm at gate bias of 10 V. With a 20 nm-thick Al2O3 gate, the gate leakage current density is reduced to 10-6 A/mm under bias up to 12 V. The results of this work show that these normally-on and normally-off FETs have high potential for future power electronics.
關鍵字(中) ★ 氮化鎵
★ 氮化銦鋁
★ 金氧半場效電晶體
★ 閘極蝕刻
★ 常關型
關鍵字(英) ★ Gate recessed
★ AlInN
★ MOSFETs
★ GaN
★ E-mode
★ Normally-off
★ HEMT
論文目次 論文摘要 V
Abstract VI
誌謝 VII
目錄 IX
圖目錄 XII
表目錄 XVII
第一章 緒論 1
1.1 GaN材料特性和發展趨勢 1
1.1.1 GaN功率元件市場與應用 1
1.1.2 GaN材料特性 3
1.2 研究動機 10
1.2.1 增強型GaN場效電晶體元件簡介與發展 10
1.2.2 高介電係數薄膜之簡介 15
1.3 論文架構 17
第二章 新型AlInN場效電晶體結構設計與模擬 18
2.1 AlInN/GaN/AlGaN/GaN磊晶結構設計 18
2.2 1D Poisson 模擬軟體 24
2.2.1 1D Poisson 材料參數建立 24
2.2.2 AlInN/GaN/AlGaN/GaN 結構能帶模擬 25
第三章 AlInN/GaN/AlGaN/GaN增強型金絕半場效電晶體之製程發展 31
3.1 前言 31
3.2 歐姆電極熱退火溫度 31
3.3 氮化鋁和氮化鎵緩衝層漏電流比較 35
3.4 場效電晶體光罩設計 37
3.5 AlInN/GaN/AlGaN/GaN增強型金絕半場效電晶體製作流程 38
第四章 AlInN/GaN/AlGaN/GaN場效電晶體元件特性分析 49
4.1 前言 49
4.2 AlInN/GaN/AlGaN/GaN試片材料特性 49
4.2.1 霍爾量測與分析 49
4.2.2 AFM量測分析 50
4.3 常開型場效電晶體之電流-電壓特性分析 52
4.3.1 Normally-on FETs開啟電流-電壓特性 52
4.2.2 Normally-on FETs截止電流-電壓特性 56
4.2.3 蕭基二極體漏電流分佈探討 59
4.4 常關型場效電晶體之電流-電壓特性分析 62
4.4.1 Normally-off FETs開啟電流-電壓特性 63
4.4.2 Normally-off FETs截止電流-電壓特性 66
4.4.3電容-電壓遲滯曲線特性 68
第五章 結論與未來發展 71
參考文獻 73
參考文獻 [1] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, "Metal-Semiconductor Field-Effect Transistor Based on Single-Crystal Gan," Applied Physics Letters, vol. 62, pp. 1786-1787, Apr 12 1993.
[2] C. Wood, Polarization Effects in Semiconductors., 1st ed., Springer-Verkag, 2008.
[3] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, "Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics," Ieee Electron Device Letters, vol. 31, pp. 189-191, 2010.
[4] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, "1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on -Resistance," Ieee Electron Device Letters, vol. 32, pp. 632-634, 2011.
[5] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate Injection Transistor (GIT);A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," Ieee Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007.
[6] K. E. Ota, K.; Okamoto, Y.; Ando, Y.; Miyamoto, H.; Shimawaki, H., "A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique," Electron Devices Meeting (IEDM), 2009 IEEE International pp. 1-4, 2009.
[7] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, "Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate," Ieee Electron Device Letters, vol. 31, pp. 111-113, 2010.
[8] D. Morgan, M. Sultana, H. Fatima, S. Sugiyama, Q. Fareed, V. Adivarahan, M. Lachab, and A. Khan, "Enhancement-Mode Insulating-Gate AlInN/AlN/GaN Heterostructure Field-Effect Transistors with Threshold Voltage in Excess of +1.5 V," Applied Physics Express, vol. 4, p. 114101, 2011.
[9] L. Yuan, H. Chen, Q. Zhou, C. Zhou, and K. J. Chen, "A novel normally-off GaN power tunnel junction FET," pp. 276-279, 2011.
[10] S. Yaegassi, M. Okada, Y. Saitou, M. Yokoyama, K. Nakata, K. Katayama, M. Ueno, M. Kiyama, T. Katsuyama, and T. Nakamura, "Vertical heterojunction field-effect transistors utilizing re-grown AlGaN/GaN two-dimensional electron gas channels on GaN substrates," physica status solidi (c), vol. 8, pp. 450-452, 2011.
[11] S. M. Sze, Physics of Semiconductor Devices 2nd ed., New York, Wiley-Interscience, 1981.
[12] M. A. Khan, M. S. Shur, and G. Simin, "Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces," Physica Status Solidi a-Applied Research, vol. 200, pp. 155-160, Nov 2003.
[13] J. Kuzmík, G. Konstantinidis, S. Harasek, í. Ha, E. Bertagnolli, A. Georgakilas, and D. Pogany, "ZrO2/(Al)GaN metal–oxide–semiconductor structures: characterization and application," Semiconductor Science and Technology, vol. 19, pp. 1364-1368, 2004.
[14] S. Abermann, G. Pozzovivo, J. Kuzmik, G. Strasser, D. Pogany, J. F. Carlin, N. Grandjean, and E. Bertagnolli, "MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs," Semiconductor Science and Technology, vol. 22, pp. 1272-1275, 2007.
[15] M. Eickelkamp, M. Weingarten, L. Rahimzadeh Khoshroo, N. Ketteniss, H. Behmenburg, M. Heuken, H. Kalisch, R. H. Jansen, and A. Vescan, "On the thermal oxidation of AlInN/AlN/GaN heterostructures," physica status solidi (c), vol. 8, pp. 2213-2215, 2011.
[16] D. Gregušová, R. Stoklas, K. Čičo, G. Heidelberger, M. Marso, J. Novák, and P. Kordoš, "Characterization of AlGaN/GaN MOSHFETs with Al2O3 as gate oxide," physica status solidi (c), vol. 4, pp. 2720-2723, 2007.
[17] T. Hashizume, S. Ootomo, and H. Hasegawa, "Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric," Applied Physics Letters, vol. 83, pp. 2952-2954, Oct 6 2003.
[18] C. M. Yujin Hori, and Tamotsu Hashizume, "Process Conditions for Improvement of Electrical Propertiesof Al2O3 /n-GaN Structures Prepared by Atomic Layer Deposition," Japanese Journal of Applied Physics, vol. 080201, 2010.
[19] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, "Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate," Ieee Electron Device Letters, vol. 31, pp. 192-194, Mar 2010.
[20] J. Kuzmik, "Power electronics on InAlN/(In)GaN: Prospect for a record performance," Ieee Electron Device Letters, vol. 22, pp. 510-512, 2001.
[21] T. Oka and T. Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," Ieee Electron Device Letters, vol. 29, pp. 668-670, 2008.
[22] "http://www.nd.edu/~gsnider/."
[23] H. Morkoc, Handbook of Nitride Semiconductors and Devices., Wiley-Vch, 2009.
[24] K. CÌŒicÌŒo, D. GregusÌŒová, S. t. GazÌŒi, J. n. SÌŒoltýs, J. n. KuzmÃk, J.-F. o. Carlin, N. Grandjean, and D. z. Pogany, "Optimization of the ohmic contact processing in InAlN//GaN high electron mobility transistors for lower temperature of annealing," physica status solidi (c), vol. 7, pp. 108-111, 2010.
[25] L. Zhou, J. H. Leach, X. F. Ni, H. Morkoccedil, and D. J. Smith, "Ti/Al/Ni/Au Ohmic contacts for AlInN/AlN/GaN-based heterojunction field-effect transistors," Journal of Applied Physics, vol. 107, p. 014508, Jan 1 2010.
[26] J. Lee, M. Yan, B. Ofuonye, J. Jang, X. Gao, S. Guo, and I. Adesida, "Low resistance Mo/Al/Mo/Au ohmic contact scheme to InAlN/AlN/GaN heterostructure," physica status solidi (a), vol. 208, pp. 1538-1540, 2011.
[27] H. M. Zhou, B. Shen, D. J. Chen, N. Tang, T. S. Chen, G. Jiao, L. Ru, R. Zhang, Y. Shi, and Y. D. Zheng, "Ti/Al/Ni/Au and Ti/Al/Pt/Au multi-layer ohmic contacts on Al/sub x/Ga/sub 1-x/N/GaN heterostructures," pp. 179-182, 2004.
[28] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and H. Xing, "InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and fT of 370 GHz," Ieee Electron Device Letters, pp. 1-3, 2012.
[29] J. Guo, Y. Cao, C. Lian, T. Zimmermann, G. Li, J. Verma, X. Gao, S. Guo, P. Saunier, M. Wistey, D. Jena, and H. G. Xing, "Metal-face InAlN/AlN/GaN high electron mobility transistors with regrown ohmic contacts by molecular beam epitaxy," physica status solidi (a), vol. 208, pp. 1617-1619, 2011.
[30] 王文凱, "深次微米氮化鎵高電子移率電晶體之製作與應用," 中央大學電機所博士班論文, 2006.
[31] T. Kehagias, G. P. Dimitrakopulos, J. Kioseoglou, H. Kirmse, C. Giesen, M. Heuken, A. Georgakilas, W. Neumann, T. Karakostas, and P. Komninou, "Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy," Applied Physics Letters, vol. 95, p. 071905, 2009.
[32] J. Song, F. J. Xu, X. D. Yan, F. Lin, C. C. Huang, L. P. You, T. J. Yu, X. Q. Wang, B. Shen, K. Wei, and X. Y. Liu, "High conductive gate leakage current channels induced by In segregation around screw- and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures," Applied Physics Letters, vol. 97, p. 232106, 2010.
[33] E. Arslan, S. Bütün, and E. Ozbay, "Leakage current by Frenkel–Poole emission in Ni/Au Schottky contacts on Al0.83In0.17N/AlN/GaN heterostructures," Applied Physics Letters, vol. 94, p. 142106, 2009.
[34] W. Chikhaoui, J. M. Bluet, M. A. Poisson, N. Sarazin, C. Dua, and C. Bru-Chevallier, "Current deep level transient spectroscopy analysis of AlInN/GaN high electron mobility transistors: Mechanism of gate leakage," Applied Physics Letters, vol. 96, p. 072107, 2010.
[35] D. Donoval, A. Chvála, R. Šramatý, J. Kováč, J. F. Carlin, N. Grandjean, G. Pozzovivo, J. Kuzmík, D. Pogany, G. Strasser, and P. Kordoš, "Current transport and barrier height evaluation in Ni/InAlN/GaN Schottky diodes," Applied Physics Letters, vol. 96, p. 223501, 2010.
[36] Z. H. C. Qi Zhou; Hongwei Chen; Chunhua Zhou; Feng, S.J.; Chen, K.J., "Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage," Electron Device Letters, IEEE vol. 33, 2012.
[37] N. I. Kuznetsov, A. E. Nikolaev, A. S. Zubrilov, Y. V. Melnik, and V. A. Dmitriev, "Insulating GaN:Zn layers grown by hydride vapor phase epitaxy on SiC substrates," Applied Physics Letters, vol. 75, p. 3138, 1999.
[38] J. B. Webb, H. Tang, S. Rolfe, and J. A. Bardwell, "Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy," Applied Physics Letters, vol. 75, pp. 953-955, Aug 16 1999.
[39] J. Kotani, M. Tajima, S. Kasai, and T. Hashizume, "Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures," Applied Physics Letters, vol. 91, Aug 27 2007.
[40] C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, "Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," Japanese Journal of Applied Physics, vol. 50, p. 021001, 2011.
[41] Y. Hori, C. Mizue, and T. Hashizume, "Interface state characterization of ALD-Al2O3/GaN and ALD-Al2O3/AlGaN/GaN structures," physica status solidi (c), vol. 9, pp. 1356-1360, 2012.
[42] E. J. Miller, X. Z. Dang, H. H. Wieder, P. M. Asbeck, E. T. Yu, G. J. Sullivan, and J. M. Redwing, "Trap characterization by gate-drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field-effect transistor," Journal of Applied Physics, vol. 87, p. 8070, 2000.
[43] G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F. Y. Fu, and W. T. Ng, "Breakdown-Voltage-Enhancement Technique for RF-Based AlGaN/GaN HEMTs With a Source-Connected Air-Bridge Field Plate," Ieee Electron Device Letters, vol. 33, pp. 670-672, 2012.
[44] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and T. Ogura, "Design and Demonstration of High Breakdown Voltage GaN High Electron Mobility Transistor (HEMT) Using Field Plate Structure for Power Electronics Applications," Japanese Journal of Applied Physics, vol. 43, pp. 2239-2242, 2004.
[45] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, "Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs," Ieee Electron Device Letters, vol. 31, pp. 659-661, 2010.
[46] F. Qian, T. Yuan, B. Zhi-Wei, Y. Yuan-Zheng, N. Jin-Yu, Z. Jin-Cheng, H. Yue, and Y. Lin-An, "The improvement of Al2O3/AlGaN/GaN MISHEMT performance by N2plasma pretreatment," Chinese Physics B, vol. 18, pp. 3014-3017, 2009.
[47] K.-W. Kim, S.-D. Jung, D.-S. Kim, H.-S. Kang, K.-S. Im, J.-J. Oh, J.-B. Ha, J.-K. Shin, and J.-H. Lee, "Effects of TMAH Treatment on Device Performance of Normally Off Al2O3/GaN MOSFET," Ieee Electron Device Letters, vol. 32, pp. 1376-1378, 2011.
指導教授 綦振瀛(Jen-Inn chyi) 審核日期 2012-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明