博碩士論文 995201021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.63.158
姓名 吳宛蓉(Wan-Rong Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 提升可撓式薄膜電晶體之類比電路可靠度的快速自動化設計方法
(Fast Reliability-Aware Automatic Sizing Approach for the Analog Circuits with Flexible TFTs)
相關論文
★ 運算放大器之自動化設計流程及行為模型研究★ 高速序列傳輸之量測技術
★ 使用低增益寬頻率調整範圍壓控震盪器 之1.25-GHz八相位鎖相迴路★ 類神經網路應用於高階功率模型之研究
★ 使用SystemC語言建立IEEE 802.3 MAC 行為模組之研究★ 以回填法建立鎖相迴路之行為模型的研究
★ 高速傳輸連結網路的分析和模擬★ 一個以取樣方式提供可程式化邏輯陣列功能除錯所需之完全觀察度的方法
★ 抑制同步切換雜訊之高速傳輸器★ 以行為模型建立鎖相迴路之非理想現象的研究
★ 遞迴式類神經網路應用於序向電路之高階功率模型的研究★ 用於命題驗証方式的除錯協助技術之研究
★ Verilog-A語言的涵蓋率量測之研究★ 利用類神經模型來估計電源線的電流波形之研究
★ 5.2GHz CMOS射頻接收器前端電路設計★ 適用於OC-192收發機之頻率合成器和時脈與資料回復電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 軟性電子(flexible electronics)具有許多優點,常應用於可攜式產品。由於可撓式薄膜電晶體許多特性與傳統CMOS 不同,CMOS 設計技術不能直接應用於軟性電子產品上,而且激烈的參數變化和產品老化效應會對軟性電子電路的設計形成巨大的挑戰,尤其是敏感的類比電路,因此一套可提升軟性電子可靠度的電路設計方法是必不可少的。
本論文提出了一種針對可撓式薄膜電晶體的類比電路自動化最佳化技術,來解決軟性電子中激烈的參數變化和電路老化效應的問題。為了提高精準度與電路設計流程的效率,本論文將最壞情況距離(worst case distance)的概念導入以方程式為基礎的自動化設計流程中,可撓式薄膜電晶體的特殊性質,例如激烈的參數變動敏感、彎曲效應、臨界電壓漂移現象等等,都有考慮在最佳化流程之中,可有效提高良率。此外,本論文提出了一種在電路設計流程當中快速預估電路老化後參數的近似方式,可以有效地考慮電路效能漂移現象。實驗結果顯示,本論文提出的自動化設計方式,可以考量電路可靠度的問題,有效地提高設計良率和產品的壽命,解決了軟性電子類比電路設計的問題。
摘要(英) Flexible electronics are possible alternative to conventional silicon electronics
for portable consumer applications with many advantages. Due to quite different
properties of flexible TFTs, conventional CMOS design techniques cannot be used
directly on flexible electronics. The severe parameter variations and aging effects of
flexible electronics are big challenges for circuit designers, especially for sensitive
analog circuits. Robust circuit design methodology is essential to implement more
complex applications with flexible electronics.
This thesis proposes an automatic robust optimization technique for analog
circuits with flexible TFTs to deal with the severe parameter variations and aging
effects. To improve both accuracy and efficiency of the circuit sizing procedure, the
WCD concept is integrated into equation-based sizing approach in this work to
optimize the design yield with accurate variation consideration. The different
properties of flexible TFTs such as bending and severe Vt variation are considered in
the optimization algorithm. Furthermore, this thesis proposes a fast approximation
technique to predict the parameter aging in the circuits to consider the shifted
performance in the circuit sizing procedure. As demonstrated on different cases with
flexible electronics, the proposed robust optimization technique can significantly
improve the fresh design yield and the lifetime yield, which solves the main difficulty
of designing the analog circuits with flexible electronics.
關鍵字(中) ★ 設計
★ 可撓式
★ 薄膜電晶體
★ 類比電路
★ 可靠度
★ 自動化
關鍵字(英) ★ Automatic
★ Sizing Approach
★ Analog Circuits
★ Flexible TFTs
★ Reliability
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、緒論 1
1-1 軟性電子所面臨的問題 1
1-2 相關研究 7
1-3 研究動機 12
1-4 論文結構 16
第二章、背景知識 17
2-1 電壓驅動設計方法 17
2-1-1 非線性規劃 18
2-1-2 gm/ID方法 19
2-1-3 限制條件與目標函數 22
2-1-4 取得電晶體尺寸 24
2-1-5 電壓驅動設計流程 25
2-2 可撓式薄膜電晶體運算放大器 26
2-3 可撓式薄膜電晶體老化模型 28
第三章、自動化可靠度導向設計 32
3-1 階層式變異度考量方法 32
3-2 快速預估電路老化後參數 36
3-3 考慮可靠度的限制條件與目標函數 38
3-4 考慮可靠度的設計流程 39
第四章、實驗結果與分析 42
4-1 實驗環境 42
4-2 實驗結果 42
4-2-1 考慮剛出廠電路良率實驗結果 43
4-2-2 考慮可靠度實驗結果 47
第五章、結論 51
第六章、參考文獻 52
參考文獻 [1] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. Leeuw, ‘‘A 13.56-MHz RFID System Based on Organic Transponders,’’ Journal of Solid-State Circuits, vol. 42, no. 1, pp. 84-92, 2007.
[2] M. Takamiyal, T. Sekitanil, Y. Miyamotol, Y. Noguchi, H. Kawaguchi, T. Someyal, T. Sakurai, ‘‘Design Solutions for a Multi-Object Wireless Power Transmission Sheet Based on Plastic Switches,’’ International Solid-State Circuits Conference, pp. 362-609, 2007.
[3] T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, T. Sakurai, “Ultraflexible organic field-effect transistors embedded at a neutral strain position,” Applied Physics Letters, vol.87, no.17, pp.173502-173502-3, 2005.
[4] H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, “Electrical Response of Amorphous Silicon Thin-Film Transistors under Mechanical Strain,” Journal of Applied Physics, vol. 92, no.10, pp. 6224-6229, 2002.
[5] W. S. Wong, S. Sambandan, T. N. Ng, M. L. Chabinyc, “Materials, Processing, and Testing of Flexible Image Sensor Arrays,” Design & Test of Computers, vol. 28, no. 6, pp. 16-23, 2011.
[6] R. Blache, J. Krumm, W. Fix, “Organic CMOS Circuits for RFID Applications,” International Solid-State Circuits Conference, pp. 208-209, 2009.
[7] T.-C. Huang, J.-L. Huang, K.-T. Cheng, “Robust Circuit Design for Flexible Electronics,” Design & Test of Computers, vol. 28, pp. 8-15, 2011.
[8] U. Sobe, K.-H. Rooch, A. Ripp, and M. Pronath, “Robust analog design for automotive applications by design centering with safe operating areas,” Transactions on Semiconductor Manufacturing, vol. 22, no. 2, pp. 217-224, 2009.
[9] R. Shringarpure, S. Venugopal, Z. Li, L. T. Clark, D. R. Allee, E. Bawolek, D. Toy, “Circuit Simulation of Threshold-Voltage Degradation in a-Si:H TFTs Fabricated at 175℃,” Transactions on Electron Devices, vol.54, no. 7, 2007.
[10] T.-C. Huang, K.-T. Cheng, “Design for Low Power and Reliable Flexible Electronics: Self-Tunable Cell-Library Design,” Journal Display Technology, vol. 5, no. 6, pp. 206-215, 2009.
[11] H. Marien, M. Steyaert, N. Aerle, P. Heremans, “An Analog Organic First-Order CT △Σ ADC on a Flexible Plastic Substrate with 26.5db Precision,” International Solid-State Circuits Conference, pp. 136-137, 2010.
[12] S.-H. Chen, K.-C. Chu, J.-Y. Lin, C.-H. Tsai, “DFM/DFY Practices During Physical Designs for Timing,” Asia and South Pacific Design Automation Conference, pp. 232-237, 2007.
[13] M. Buhler, J. Koehl, J. Bickford, J. Hibbeler, U. Schlichtmann, R. Sommer, M. Pronath, A. Ripp, “DFM/DFY Design for Manufacturability and Yield - Influence Of Process Variations in Digital, Analog and Mixed-Signal Circuit Design,” Design Automation and Test in Europe, pp. 1-6, 2006.
[14] X. Li, J. Wang, L. T. Pileggi, T.-S. Chen, W. Chiang, “Performance-Centering Optimization for System-Level Analog Design Exploration,” International Conference on Computer-Aided Design, pp. 422-429, 2005.
[15] H. E. Graeb, “Analog Design Centering and Sizing,” Springer, 2007.
[16] X. Pan, H. Graeb, “Lifetime Yield Optimization of Analog Circuits Considering Process Variations and Parameter Degradations,” Advances in Analog Circuits, 2011.
[17] T. McConaghy, G. G. E. Gielen, “Globally Reliable Variation-Aware Sizing of Analog Integrated Circuits via Response Surfaces and Structural Homotopy,” Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 11, pp. 1627-1640, 2009.
[18] M. S. Bazarar, H. D. Sherali, and C. M. Shetty, “Nonlinear Programming,” Wiley, 2nd ed, 1993.
[19] S.-E. Liu, C.-P. Kung, J. Hou, “Estimate Threshold Voltage Shift in a-Si:H TFTs Under Increasing Bias Stress,” Transactions on Electron Devices, vol. 56, no. 1, pp. 56-59, 2009.
[20] F. Silveira, D. Flandre, P.G.A. Jespers, “A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA,” Journal of Solid-State Circuits, vol. 31, no. 9, pp. 1314-1319, 1996.
[21] Y.-C. Tarn, P.-C. Ku, H.-H. Hsieh, L.-H. Lu, “An amorphous silicon operational amplifier and its application to 4 bit digital to analog converter,” Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1028-1035, 2010.
[22] S. Deyati, P. Mandal, “An Automated Design Methodology for Yield Aware Analog Circuit Synthesis in Submicron Technology,” IEEE International Symposium on Quality Electronic Design, pp. 1-7, Mar. 2011.
[23] F. Liu, S. Ozev, “Hierarchical analysis of process variation for mixed-signal systems,” Asia and South Pacific Design Automation Conference, vol.1, pp. 465-470, 2005.
[24] R. Jiang, W. Fu, J. M. Wang, V. Lin, C.C.-P. Chen, “Efficient Statistical Capacitance Variability Modeling with Orthogonal Principle Factor Analysis,” International Conference on Computer-Aided Design, pp 683-690, 2005.
[25] M. Pronath, “Circuit Design for Yield with MunEDA WiCkeD,” MunEDA Technical Forum Taiwan, 2008.
[26] J. F. Swidzinski, D. Alexander, M. Qu, M. A. Styblinski, “A Systematic Approach to Statistical Simulation of Complex Analog Integrated Circuits,” International Workshop on Statistical Metrology, pp. 86-89, 1997.
[27] J. F. Swidzinski, M. A. Styblinski, G. Xu, “Statistical Behavioral Modeling of Integrated Circuits,” International Symposium on Circuits and Systems, pp. 98-101, 1998.
[28] T. Fujita, K. Okada, H. Fujita, H. Onodera, K. Tamaru, “A Method For Linking Process-level Variability to System Performances,” Asia and South Pacific Design Automation Conference, pp. 547-551, 2000.
指導教授 劉建男(Chien-Nan Jimmy Liu) 審核日期 2012-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明