博碩士論文 92541021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.51.115
姓名 林主庫(Juu-kuh Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 直接轉矩控制轉矩漣波最小化之設計與實現
(Design and Implementation of Direct Torque Control for Induction Motor with Minimum Torque Ripple)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要目的為研究感應馬達在直接轉矩控制情況下分析轉矩漣波。方法上利用每一取樣時間使轉矩漣波均方根值最小化,再以此轉矩漣波均方根最小化之準則,獲得各向量之最佳切換時間。此最佳切換時間則是實際與參考轉矩間的轉矩誤差函數,這意謂著控制最佳切換時間是屬於區域性初始轉矩誤差函數,而不是全域性的。
論文所提出的最佳轉矩漣波控制及初始轉矩誤差包含三個問題:(1)最佳漣波控制隨時間增加,初始轉矩誤差的演化情形;(2)尋求一種最佳初始轉矩誤差,可使得使全域性轉矩漣波最小化;(3)可使全域性轉矩漣波最小化的設計。針對這些問題,本論文發現能使全域性轉矩漣波最小化之準則,並證明全域性轉矩存在最小漣波。另外,有關非全域性轉矩漣波控制隨時間增加,初始轉矩誤差的演化情形,論文研究證明區域性最小漣波將會收斂到全域性最小漣波。
本論文也提出藉由二階段控制可得到全域性最小轉矩漣波的結果。第一階段控制可驅使初始轉矩誤差為零值,並使轉矩漣波最小化。第二階段控制可使轉矩漣波最小化。最後經由模擬及實驗證明區域性轉矩漣波初始轉矩誤差,隨時間之演化可收斂至全域性轉矩漣波之最小漣波值。比較區域性轉矩漣波與全域性轉矩漣波後可得到,全域性轉矩漣波有效降低馬達運轉時所產生的轉矩漣波之結果。
摘要(英) The purpose of this dissertation is to investigate a novel direct torque control for induction motors. To theoretically analyze the torque ripple, a criterion for the torque ripple should be firstly defined. This dissertation aims to minimize the torque ripple criteria defined by the root mean square (RMS) over a sampling period. By minimizing the RMS torque ripple criteria, one could obtain the optimal switching time for zero and nonzero vectors. However, the optimal switching time is a function of the starting torque error between the reference and actual torques. This means this controlled optimal torque ripple is local but global because of the dependence of starting toque error.
Three interesting problems are raised from this starting torque error based optimal torque ripple control. The first one is the evolution of the starting torque error based optimal torque ripple when time increases. The next problem is the existence of global optimal torque ripple, which should not be a function of the starting torque error. The last one is to design a control input such that the torque ripple is the global minimum.
Aiming at three problems mentioned above, this dissertation firstly not only proves the existence but also finds the formula of the global minimum torque ripple. Then, starting from a local minimum torque ripple, this dissertation deeply investigates the evolution of the local minimum torque ripple as time increases. A very interesting fact has been found is the convergence from local to global minimum torque ripple when time goes to infinite. Moreover, because of the existence of global minimum torque ripple, this dissertation proposes a two-phase control to obtain the global minimum torque ripple. The first phase control drives the torque error to zero. Therefore, the second phase control enables the global minimum torque ripple. Finally both simulation and experimental results are provided to verify the feasibility of the new-type direct torque control for induction motor drive system.
關鍵字(中) ★ 全域性
★ 轉矩漣波演化
★ 直接轉矩控制
★ 感應馬達
★ 均方根誤差
關鍵字(英) ★ Torque ripple evolution
★ Direct torque control
★ Induction motor
★ Root-mean-square error
★ Global minimum torque ripple.
論文目次 摘要............................................................................................................................................i
ABSTRACT..............................................................................................................................ii
誌謝..........................................................................................................................................iv
TABLE OF CONTENTS...........................................................................................................v
LIST OF FIGURES.................................................................................................................vii
LIST OF TABLES....................................................................................................................ix
NOMENCLATURE...................................................................................................................x
Chapter I Introduction...........................................................................................................1
1.1 Motivation...................................................................................................................1
1.2 Objectives………..……………………………………...……………………...…..4
1.3 Dissertation Structure…………………………………………………………........4
Chapter II Theoretical Background......................................................................................6
2.1 Introduction.................................................................................................................6
2.2 DTC Concept………………………………………………………...……...............6
2.3 Motor Equation………………………………………………..….............................9
2.4 Torque Ripple............................................................................................................11
Chapter III Evolution of Local to Global Minimum Torque Ripples of Direct Torque
Control for Induction Motor Drives...............................................................14
3.1 Motivation……………………………………...................………………..............14
3.2 Local and Global Minimum Root-Mean-Square Torque Ripples……………........16
3.2.1 Minimum Root-Mean-Square Torque Ripple Method.....................................17
3.2.2 Global Minimum Root-Mean-Square Torque Ripple.......................................19
3.3 Evolution of Local to Global Minimum RMS Torque Ripple...................................20
3.5 Summary...................................................................................................................25
Chapter IV Global Minimum Torque Ripple Controller Design of Induction Motor
Drives..................................................................................................................26
4.1 Motivation...............................................................................................................26
4.2Global Minimum RMS Torque Ripple Control Strategy.........................................29
4.3 Simulation Results...................................................................................................35
4.4 Comparison with Field Oriented Control (FOC) method........................................37
4.5 Verifying the Proposed Method with High Power Motor........................................38
4.6 Summary..................................................................................................................40
Chapter V Hardware Design and Experimental Results...................................................41
5.1 Introduction.............................................................................................................41
5.2 Structure of the Hardware........................................................................................42
5.2.1 Digital Signal Processor..................................................................................44
5.2.2 Phototransistor Coupler Isolation and Drive Circuit......................................45
5.2.3 Filter Circuit of Encoder Signal......................................................................46
5.3. Experimental Results..............................................................................................47
5.3.1 Experimental Results of Evolution from Local to Global Minimum Torque Ripple..........................................................................................................48
5.3.2 Experimental Results of the Proposed Global Minimum Torque Ripple
Strategy........................................................................................................49
Chapter VI Concluding Remarks and Future Works.......................................................53
6.1 Conclusions.............................................................................................................53
6.2 Future works............................................................................................................54
Publications during Ph.D. studies ...................................................................................... 55
References...............................................................................................................................56
Author information...............................................................................................................61
參考文獻 [1] Shyu, K.K., and Shieh, H.J., "A new switching surface sliding-mode speed control
for induction motor drive systems," IEEE Trans. Power Electron, vol. 11, no. 4, pp.
660-667, 1996.
[2] Santana, E.S., Bim, E., and Amaral, W.C., "Predictive algorithm for controlling
speed and motor flux of induction motor," IEEE Trans. Ind. Electron, vol. 55, no.
12, pp. 4398-4407, 2008.
[3] Shieh, H.J., and Shyu, K.K., "Nonlinear sliding-mode torque control with adaptive
backstepping approach for induction motor drive," IEEE Trans. Ind. Electron, vol.
46, no. 2, pp. 380-389, 1999.
[4] Wlas, M., Krzeminski, Z., and Toliyat, H., "Neural-Network-Based parameter
estimations of Induction Motors," IEEE Trans. Ind. Electron., vol. 55, no. 4, pp.
1783-1794, 2008.
[5] Takahashi, I., and Noguchi, T., "A new quick response and high efficiency control
strategy of an induction motor," IEEE Trans. Ind. Applicat.,
vol.22, no. 5, pp. 820-827, 1986.
[6] Depenbrock, M., "Direct self-control (DSC) of inverter-fed induction machine,"
IEEE Trans. Power Electronic, vol. 3, no. 4, pp. 420-429, 1988.
[7] Habetler, T., Profumo, F., Pastorclli, M., and Tolbcrt, L. M., "Direct torquc control
of an Induction machines using space vector modulation," IEEE Trans. Ind.
Applicat, vol. 28, no. 5, pp. 1045-1053, 1992.
[8] Kazmierkowski, M.P., and Kasprowicz, A.B., "Improved direct torque and flux
vector control of PWM inverter-fed induction motor drives," IEEE Trans. Ind.
Electron., vol. 42, no. 4, pp. 344-350, 1995.
[9] Mir, S., Elbuluk, M.E., and Zinger, D.S., "PI and fuzzy estimators for tuning the
stator resistance in direct torque control of induction machines," IEEE Trans. Ind.
Electron., vol. 13, no. 2, pp. 279-289, 1998.
[10] Kang, J. K., and Sul, S. K., "New direct torque control of induction motor for
minimum torque ripple and constant switching frequency," IEEE Trans.
Ind. Applicat., vol. 35, no. 5, pp. 1076-1082, 1999.
[11] Casadei, D., Serra, G., and Tani, A., "Implementation of a direct torque control
algorithm for induction motors based on discrete space vector modulation," IEEE
Trans. Power Electron., vol. 15, no. 4, pp. 769-777, 2000.
[12] Lascu, C., Boldea. I., and Blaabjerg, F., "A modified direct torque control for
induction motor sensorless drive," IEEE Trans. Ind. Applicat.,
vol. 36, no. 1, pp. 122-130, 2000.
[13] Lee, K. B., and Song, J. H., "Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency," IEEE Trans. Power Electron., vol. 17, no. 2, pp. 255-264, 2002.
[14] Martins, C. A., Roboam, X., Meynard, T. A., and Carvalho, A. S., "Switching
frequency imposition and ripple reduction in DTC drives by using a multilevel
converter" IEEE Trans. Power Electron., vol. 17, no. 2, pp.286-297.
2002.
[15] Casadei, D., Serra, G., Tani, A., Zarri, L., and Profumo, F., "Performance analysis
of a speed-senserloss induction motor drive based on a constant-switching
frequency DTC scheme," IEEE Trans. Ind. Applicat., vol. 39,
no. 2, pp. 476-484, 2003.
[16] Idris, N. R. N., and Halim, A. M. Y., "Direct torque control of induction machines
with constant switching frequency and reduced torque ripple," IEEE Trans.
Ind. Electron., vol. 51, no. 4, pp. 758-767, 2004.
[17] Tripathi, A., Khambadkone, A. M., and Panda, K., "Torque ripple analysis and
dynamic performance of a space vector modulation based control method for
AC drives," IEEE Trans. Power Electron., vol. 20, no. 2, pp.
485-492, 2005.
[18] Lee, K. B., and Blaabjerg, F., "Sensorless DTC-SVM for induction motor driven
by a matrix converter using a parameter estimation strategy," IEEE Trans.
Ind. Electron., vol. 55, no. 2, pp. 512-521, 2008.
[19] Garcia, X. D. T., Arias, A., Jayne, M. G., and Witting, P. A., "Direct torque
control of induction motors utilizing three-level voltage source inverters," IEEE
Trans. Ind. Electron., vol. 55, no. 2, pp. 956-958, 2008.
[20] Abad, G., Rodriguez, M. A., and Poza, J., "Two-level VSC based predictive direct
torque control of the double fed induction machine with reduced torque and flux
ripples at low constant switching frequency," IEEE Trans. Power
Electron., vol. 23, no. 3, pp. 1050-1061, 2008.
[21] Beerten, J., Verveckken, J., and Driesen, J., "Predictive direct torque control for
flux and torque ripple reduction," IEEE Trans. Ind. Electron.,
vol. 57, no. 1, pp. 404-412, 2010.
[22] Shyu, K.K., Lin, J.K., Pham, V.T., Yang, M.J., and Wang, T.W., "Global minimum torque
ripple design for direct torque control of induction motor drives," IEEE
Trans. Ind. Electron., vol. 57, no. 9, pp. 3148-3156, 2010.
[23] Lai, Y.S., and Chen, J.H., "A new approach to direct torque control of induction
motor drives for constant inverter switching frequency and torque ripple
reduction," IEEE Trans. Energy Conversion, vol. 16, no. 3, pp.
220-227, 2001.
[24] Zhang, Y., Zhu, J., Zhao, Z., Xu, W., and Dorrell, D.G., "An improved direct
torque control for three-level inverter-fed induction motor Sensorless Drive,"
IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1-12, 2010.
[25] Hajian, M., Soltani, J., Markadeh, G. A., and Hosseinnia, S., "Adaptive
nonlinear direct torque control of sensorless IM drives with efficiency
optimization," IEEE Trans. Ind. Electron., vol. 57, no. 3, pp.
975-985, 2010.
[26] Khiucha, F., Lagoun, S. M., Marouani, K., Kheloui, A., and El Hachemi
Benbouzid, M., "Hybrid cascaded h-bridge multilevel-Inverter
induction-motor-drive direct torque control for automotive applications," IEEE
Trans. Ind. Electron., vol. 57, no. 3, pp. 892-899, 2010.
[27] Karzeminski, Z.: Nonlinear control of induction motor. paper presented at the in
Proc. IFAC 10th World Congr. Automatic control, Monachium, Germany, pp.
349-354,
[28] Cruz, S.M.A., Stefani, A., Filippetti, F., and Cardoso, A.J.M., "A new odel-based
technique for the diagnosis of rotor faults in RFOC induction motor drives," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4218-4228, 2008.
[29] Abu-Rub, H., Guzinski, J., Krzeminski, Z., and Toliyat, H.A., "Advanced control
of induction motor based on load angle estimation," IEEE Trans. Ind.
Electron.,vol. 55, no. 1, pp. 5-14, 2004.
[30] Maiti, S., Chakraborty, C., Hori, Y., and Ta, M.C., "Model reference adaptive
controller-based rotor resistance and speed estimation techniques for vector
controlled induction motor drive utilizing reactive power," IEEE Trans. Ind.
Electron., vol. 35, no. 2, pp. 594-601, 2008.
[31]Wlas, M., Krzeminski, Z., Guzinski, J., and Abu-Rub, H.,
"Artificial-neural-network-Based sensorless nonlinear control of induction
motors," IEEE Trans. Energy Conversion, vol. 20, no. 3, pp. 520-528, 2005.
[32] Abad, G, Rodriguez, M.A., and Poza, J., "Two-level VSC based predictive direct
torque control of the doubly fed induction machine with reduced torque and flux
ripples at low constant switching frequency," IEEE Trans. Power
Electron., vol. 23, no. 3, pp. 1050-1061, 2008.
[33] Casadei, D., Profumo, F., Serra, G., and Tani, A., "FOC and DTC: Two viable
schemes for induction motors torque control," IEEE Trans. Power Electron.,
vol.17, no. 53, pp. 779-787, 2002.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2012-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明