參考文獻 |
[1] Available: http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/091207_pv_industry_expected_to_return_to_high_growth_in_2010.asp
[2] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, "19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells," Applied Physics Letters, vol. 73, p. 1991, 1998.
[3] M. Wolf, "Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth’’s Surface Operation," Proceedings of the IRE, vol. 48, pp. 1246-1263, 1960.
[4] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells," Journal of Applied Physics, vol. 32, p. 510, 1961.
[5] G. Guttler and H. Queisser, "Impurity photovoltaic effect in silicon," Energy Conversion, vol. 10, pp. 51-55, 1970.
[6] A. Luque and A. Marti, "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels," Physical Review Letters, vol. 78, pp. 5014-5017, 1997.
[7] A. Luque and A. Marti, "Recent Progress in Intermediate Band Solar Cells," pp. 49-52, 2006.
[8] M. A. Green, "Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 137-144, 2001.
[9] A. Luque, A. Marti, E. Antolin, and C. Tablero, "Intermediate bands versus levels in non-radiative recombination," Physica B: Condensed Matter, vol. 382, pp. 320-327, 2006.
[10] K. W. J. Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. S. Roberts, and C. T. Foxon, "Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device," Applied Physics Letters, vol. 59, p. 135, 1991.
[11] A. Marti, L. Cuadra, and A. Luque, "Partial filling of a quantum dot intermediate band for solar cells," IEEE Transactions on Electron Devices, vol. 48, pp. 2394-2399, 2001.
[12] R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells," Applied Physics Letters, vol. 93, p. 083111, 2008.
[13] G. Beaucarne, A. S. Brown, M. J. Keevers, R. Corkish, and M. A. Green, "The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells," Progress in Photovoltaics: Research and Applications, vol. 10, pp. 345-353, 2002.
[14] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, "Multiband GaNAsP quaternary alloys," Applied Physics Letters, vol. 88, p. 092110, 2006.
[15] E. Canovas, A. Marti, A. Luque, and W. Walukiewicz, "Optimum nitride concentration in multiband III-N–V alloys for high efficiency ideal solar cells," Applied Physics Letters, vol. 93, p. 174109, 2008.
[16] W. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Applied Physics Letters, vol. 95, p. 011103, 2009.
[17] T. Tanaka, K. M. Yu, A. X. Levander, O. D. Dubon, L. A. Reichertz, N. Lopez, M. Nishio, and W. Walukiewicz, "Demonstration of ZnTe1-xOx Intermediate Band Solar Cell," Japanese Journal of Applied Physics, vol. 50, p. 082304, 2011.
[18] A. Luque, A. Martı́, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence," Journal of Applied Physics, vol. 96, p. 903, 2004.
[19] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, "Effect of strain compensation on quantum dot enhanced GaAs solar cells," Applied Physics Letters, vol. 92, p. 123512, 2008.
[20] S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, "AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs," Semiconductors, vol. 43, pp. 514-518, 2009.
[21] C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, "Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells," Applied Physics Letters, vol. 98, p. 163105, 2011.
[22] A. Luque and A. Marti, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv Mater, vol. 22, pp. 160-74, Jan 12 2010.
[23] J. Li and S.-H. Wei, "Alignment of isovalent impurity levels: Oxygen impurity in II-VI semiconductors," Physical Review B, vol. 73, 2006.
[24] K. Uesugi, N. Morooka, and I. Suemune, "Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements," Applied Physics Letters, vol. 74, p. 1254, 1999.
[25] J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearah, and K. C. Hsieh, "Luminescence quenching and the formation of the GaP1−xNx alloy in GaP with increasing nitrogen content," Applied Physics Letters, vol. 60, p. 2540, 1992.
[26] W. G. Bi and C. W. Tu, "N incorporation in InP and band gap bowing of InNxP1−x," Journal of Applied Physics, vol. 80, p. 1934, 1996.
[27] J. C. Harmand, G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, and G. Patriarche, "Investigations on GaAsSbN/GaAs quantum wells for 1.3–1.55μm emission," Journal of Crystal Growth, vol. 227-228, pp. 553-557, 2001.
[28] B. N. Murdin, M. Kamal-Saadi, A. Lindsay, E. P. O’Reilly, A. R. Adams, G. J. Nott, J. G. Crowder, C. R. Pidgeon, I. V. Bradley, J. P. R. Wells, T. Burke, A. D. Johnson, and T. Ashley, "Auger recombination in long-wavelength infrared InNxSb1-x alloys," Applied Physics Letters, vol. 78, p. 1568, 2001.
[29] M. Seong, H. Alawadhi, I. Miotkowski, A. Ramdas, and S. Miotkowska, "Role of electronegativity in semiconductors: Isoelectronic S, Se, and O in ZnTe," Physical Review B, vol. 62, pp. 1866-1872, 2000.
[30] W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, J. Wu, E. E. Haller, Y. Nabetani, T. Mukawa, Y. Ito, and T. Matsumoto, "Effect of oxygen on the electronic band structure in ZnOxSe1-x alloys," Applied Physics Letters, vol. 83, p. 299, 2003.
[31] A. Polimeni, M. Capizzi, Y. Nabetani, Y. Ito, T. Okuno, T. Kato, T. Matsumoto, and T. Hirai, "Temperature dependence and bowing of the bandgap in ZnSe1-xOx," Applied Physics Letters, vol. 84, p. 3304, 2004.
[32] W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson, and S. Kurtz, "Band Anticrossing in GaInNAs Alloys," Physical Review Letters, vol. 82, pp. 1221-1224, 1999.
[33] N. Lopez, L. Reichertz, K. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Physical Review Letters, vol. 106, 2011.
[34] A. Luque, A. Marti, and C. Stanley, "Understanding intermediate-band solar cells," Nature Photonics, vol. 6, pp. 146-152, 2012.
[35] Y. Nabetani, T. Mukawa, Y. Ito, T. Kato, and T. Matsumoto, "Epitaxial growth and large band-gap bowing of ZnSeO alloy," Applied Physics Letters, vol. 83, p. 1148, 2003.
[36] Y. Nabetani, T. Mukawa, T. Okuno, Y. Ito, T. Kato, and T. Matsumoto, "Structure and optical properties of ZnSeO alloys with O composition up to 6.4%," Materials Science in Semiconductor Processing, vol. 6, pp. 343-346, 2003.
[37] K. Iwata, A. Yamada, P. Fons, K. Matsubara, and S. Niki, "Natural ordering of ZnO1−xSex grown by radical source MBE," Journal of Crystal Growth, vol. 251, pp. 633-637, 2003.
[38] A. Belabbes, A. Zaoui, and M. Ferhat, "Lattice mismatch consequences for the intrinsic characteristics in the dilute (Zn, Se)O alloys," Journal of Physics: Condensed Matter, vol. 19, p. 456212, 2007.
[39] Y. K. Kim, J. K. Kim, W. G. Lee, S. Y. Kim, B. I. Kim, J. H. Ha, N. Starzhinskiy, V. Ryzhikov, and B. Grinyov, "Properties of semiconductor scintillator ZnSe:O," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 580, pp. 258-261, 2007.
[40] S. Kurtz, J. F. Geisz, B. M. Keyes, W. K. Metzger, D. J. Friedman, J. M. Olson, A. J. Ptak, R. R. King, and N. H. Karam, "Effect of growth rate and gallium source on GaAsN," Applied Physics Letters, vol. 82, p. 2634, 2003.
[41] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, "Time-resolved photoluminescence studies of InGaN epilayers," Applied Physics Letters, vol. 69, p. 2837, 1996.
[42] A. S. Lin, W. Wang, and J. D. Phillips, "Model for intermediate band solar cells incorporating carrier transport and recombination," Journal of Applied Physics, vol. 105, p. 064512, 2009.
[43] R. S. Crandall, "Modeling of thin film solar cells: Uniform field approximation," Journal of Applied Physics, vol. 54, p. 7176, 1983.
[44] S. S. Hegedus, "Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection," Progress in Photovoltaics: Research and Applications, vol. 5, pp. 151-168, 1997.
[45] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single-junction and tandem solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 2952-2959, 2006.
[46] M. A. Green, Solar Cells: Prentice Hall, 1982.
[47] J. Nelson, The Physics of Solar Cells: Imperial College Press, 2003.
[48] V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, "Quantum dot solar cells," Journal of Applied Physics, vol. 89, p. 2268, 2001.
[49] G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, "Thermodynamic limits of quantum photovoltaic cell efficiency," Applied Physics Letters, vol. 91, p. 223507, 2007.
[50] A. Luque and A. Marti, "A metallic intermediate band high efficiency solar cell," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 73-86, 2001.
[51] S. Adachi, Handbook on Physical Properties of Semiconductors vol. 3, 2004.
[52] C. Hu, Z. Ding, Z. Qin, Z. Chen, K. Xu, Y. Wang, Z. Yang, S. Yao, B. Shen, and G. Zhang, "Investigation on the different barrier effect of Ni and Pt in the Ti/Al/Pt/Au and Ti/Al/Ni/Au contacts to n-type GaN," Journal of Crystal Growth, vol. 298, pp. 804-807, 2007.
[53] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, "Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes," Applied Physics Letters, vol. 83, p. 2943, 2003.
[54] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Applied Physics Letters, vol. 78, pp. 3842-3844, 2001.
[55] S. Young Kim, H. Won Jang, J. Kyu Kim, C. Min Jeon, W. Il Park, G.-C. Yi, and J.-L. Lee, "Low-resistance Ti/Al ohmic contact on undoped ZnO," Journal of Electronic Materials, vol. 31, pp. 868-871, 2002.
[56] K. Ip, K. H. Baik, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, B. Luo, F. Ren, and J. M. Zavada, "Annealing temperature dependence of contact resistance and stablity for Ti/Al/Pt/Au ohmic contacts to bulk n-ZnO," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2378, 2003.
[57] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Carrier concentration dependence of Ti/Al/Pt/Au contact resistance on n-type ZnO," Applied Physics Letters, vol. 84, p. 544, 2004.
[58] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, "Specific contact resistance of Ti/Al/Pt/Au ohmic contacts to phosphorus-doped ZnO thin films," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 171, 2004.
|