博碩士論文 995201058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.27.33
姓名 薛忠豪(Jung-Hau Shiue)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於極座標發射機之高效率波包放大器與功率放大器
(High Efficiency Envelope Amplifiers and Power Amplifiers for Polar Transmitters)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現
★ 鐵電可變電容之設計與製作★ 用於功率放大器效率提升之鐵電基可調式匹配網路
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在射頻模組中,發射機消耗相當大一部分的直流功率。改善無線發射機之效率對延長行動裝置的通話時間甚有助益。極座標發射機為一可提升發射機效率之架構。本論文將探討極座標發射機中的兩個重要的子電路-波包放大器及功率放大器。
在現今的無線通訊系統中,資料率不斷增加。應用於極座標發射機中的波包放大器除了必須具備高效率之特性外也必須承載高頻寬之訊號。線性協助波包放大器是一個可以達成高效率及寬頻的架構。本論文將論述線性協助波包放大器之操作原理與分析、進行設計,並以混成電路的方式實現。以弦波為輸入訊號的量測結果顯示,此波包放大器之操作頻率可至8 MHz,且最大效率值為60%。
在極座標發射機中,功率放大器常使用高效率切換式功率放大器,其中則以E類功率放大器為最廣泛使用之架構。本論文將論述E類功率放大器的理論分析及操作原理,並使用一pHEMT電晶體設計並製作一中心頻率為1.75 GHz的E類功率放大器。量測結果顯示,放大器之飽和輸出功率為21 dBm,而汲極效率為50%。
現今手機功率放大器除了需要高效率之外,瓦等級之輸出功率也是必要的。我們使用TSMC 0.18-μm CMOS製程設計了一1.95 GHz使用鎊線電感之E類功率放大器;電路架構利用並聯多路電晶體來達到1 W的輸出功率,電晶體採用串疊組態以承受E類功率放大器較大的汲極電壓擺幅。在輸出匹配網路中,使用鎊線實現電感來降低射頻損耗、提高效率。模擬結果顯示,放大器之飽和輸出功率大於30 dBm,汲極效率與PAE在30 dBm輸出功率時皆大於50%及45%。
本論文探討了高效率線性協助波包放大器及E類功率放大器之設計,並以混成電路方式實現一波包放大器及功率放大器,成功地驗證了設計概念。
摘要(英) In RF modules, transmitter consumes considerable amount of DC power. Improving the power efficiency of wireless transmitter would help extend the talk time of mobile devices. Polar transmitter has been proposed as a high-efficiency transmitter architecture. In this thesis, two important circuit components of polar transmitter, namely, envelope amplifier and power amplifier, are investigated.
Due to the ever-increasing data rate in modern communication systems, envelope amplifiers must be able to handle wideband signals while remaining highly efficient. To achieve both high efficiency and wide bandwidth for envelope amplification, one can use linear-assisted envelope amplifiers. In this thesis, the operating principles of linear-assisted envelope amplifiers are introduced. To verify the principles, a hybrid envelope amplifier is designed and implemented. The measurement results show that, with sinusoidal input, the envelope amplifier can operate up to 8 MHz and its peak efficiency is 60%.
High-efficiency switching-mode power amplifiers are often adopted in polar transmitters. Among switching-mode power amplifiers, Class-E power amplifier is widely used for RF power amplification. In this thesis, the theory and operating principles of Class-E amplifier are introduced. Following that, a 1.75-GHz Class-E power amplifier using a GaAs pHEMT transistor is designed, fabricated, and measured. Measurement results show that the saturation output power and the drain efficiency of the amplifier are 21 dBm and 50%, respectively.
For handset power amplifiers, output power of 1 Watt or above is required. In this work, a 1.95-GHz Class-E power amplifier using bondwire inductor is designed in TSMC 0.18-μm CMOS technology. Output power of 1 W is achieved by combining multiple transistors in parallel. The transistors are in cascade configuration in order to withstand the large voltage swing at the drain, which is a characteristic of Class-E power amplifier. Finally, in output matching network, the inductor is realized using bondwire in order to reduce the RF loss and improve the power efficiency of the amplifier. Simulation results show that the saturation output power of the amplifier is greater than 30 dBm and the drain efficiency and PAE at 30 dBm are greater than 50% and 45%, respectively.
In this thesis, the design of high-efficiency linear-assisted envelope amplifier and Class-E power amplifier are investigated. The design concepts are successfully verified by the implemented envelope amplifier and power amplifier.
關鍵字(中) ★ 極座標發射機
★ E類功率放大器
★ 波包放大器
關鍵字(英) ★ class-E power amplifier
★ envelope amplifier
★ polar transmitters
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1–1 研究動機 1
1–2 文獻回顧 2
1–2–1 波包消除重建技術(Envelope Elimination and Restoration) 3
1–2–2 極座標調變發射器(Polar Modulated Transmitter) 4
1–2–3 波包追蹤技術(Envelope Tracking) 5
1–2–4 波包放大器(Envelope Amplifier) 6
1–2–5 切換式功率放大器 8
1–3 論文架構 9
第二章 線性協助波包放大器設計與實作 10
2–1 簡介 10
2–2 線性協助波包放大器之操作原理 12
2–2–1 小訊號線性操作 15
2–2–2 大訊號非線性操作 18
2–3 線性協助波包放大器設計與模擬 19
2–3–1 小訊號線性操作模擬 20
2–3–2 大訊號非線性操作模擬 26
2–3–3 小訊號線性操作至大訊號非線性操作 29
2–3–4 線性協助波包放大器設計 32
2–4量測結果 34
2–5結果與討論 38
第三章 E類高效率功率放大器設計與實作 39
3–1 簡介 39
3–2 E類功率放大器理論分析 39
3–2–1 有限電感之理想E類功率放大器 49
3–3 高效率E類功率放大器之設計 51
3–4 模擬與量測結果 53
3–4–1 S參數與大訊號電路量測與模擬比較 54
3–4–2電路量測與偵錯(Debug)比較 57
3–5 結果與討論 61
第四章 高效率一瓦E類功率放大器 63
4–1 簡介 63
4–1–1 串疊級組態論述 64
4–1–2 串疊級組態功率損耗論述 65
4–2 1.95 GHz之一瓦功率放大器設計 70
4–2–1 架構簡介 70
4–2–2 設計流程與電路佈局 72
4–2–3電路模擬結果 76
4–3 量測結果與電路偵錯 80
4–4 結果與討論 83
第五章 結論與未來展望 84
參考文獻 86
參考文獻 [1] Li Yan, J. Lopez, D. Y. C. Lie, K. Chen, S. Wu, T.-Y. Yang, G.-K. Ma, ‘‘Circuits and system design of RF polar transmitters using envelope-tracking and SiGe power amplifiers for mobile WiMAX,’’ IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, no.5, pp.893–901, May 2011.
[2] G. Hanington, P.-F. Chen, P. M. Asbeck, L. E. Larson, ‘‘High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,’’ IEEE Transactions on Microwave Theory and Techniques, vol.47, no.8, pp.1471–1476, August 1999.
[3] F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, N. O. Sokal, ‘‘Power amplifiers and transmitters for RF and microwave,’’ IEEE Transactions on Microwave Theory and Techniques, vol.50, no.3, pp.814–826, March 2002.
[4] J. T. Stauth, “Dynamic power supply design for high-efficiency wireless transmitters,’’ M.S. thesis, University of California at Berkeley, 2006.
[5] A. R. Behzad, M.-S. Zhong, S. B. Anand, Lin Li, K. A. Carter, M. S. Kappes, T.-H. Lin, T. Nguyen, D. Yuan, S. Wu, Y. C. Wong, F. Victor, A. Rofougaran, ‘‘A 5-GHz direct-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard,’’ IEEE Journal of Solid-State Circuits, vol.38, no.12, pp. 2209–2220, December 2003.
[6] S. C. Cripps, RF Power Amplifiers for Wireless Communications. pp. 401–425, Norwood, MA: Artech House, 2006.
[7] W. H. Doherty, ‘‘A new high efficiency power amplifier for modulated waves,’’ Proceedings of the Institute of Radio Engineers, vol.24, no.9, pp. 1163–1182, September 1936.
[8] L. R. Kahn, ‘‘Single-sideband transmission by envelope elimination and restoration,’’ Proceedings of the IRE, July 1952, pp.803–806.
[9] F. H. Raab, B. E. Sigmon, R. G. Myers, R. M. Jackson, ‘‘High-efficiency L-band Kahn-technique transmitter,’’ IEEE MTT-S International Microwave Symposium Digest, June 1998, pp.585–588.
[10] N. O. Sokal and A. Grebennikov, Switch mode RF Power Amplifiers, 1st ed. Burlington MA, USA: Elsevier, 2007.
[11] http://www.mem.com.tw/article_content.asp?sn=1107130012, ‘‘根據目標效能對症下藥 射頻功率放大器各領風騷’’ 陳煥昇卅呂良鴻
[12] Narisi Wang, Xinli Peng, V. Yousefzadeh, D. Maksimovic, S. Pajic, Z. Popovic, ‘‘Linearity of X-band class-E power amplifiers in EER operation,’’ IEEE Transactions on Microwave Theory and Techniques, vol.53, no.3, pp. 1096–1102, March 2005.
[13] F. H. Raab, ‘‘Split-band modulator for Kahn-technique transmitters,’’ IEEE MTT-S International Microwave Symposium Digest, June 2004. pp. 887–890.
[14] K. Bumman, M. Junghwan, K. Ildu. (2010 Aug.). Efficiently Amplified. IEEE Microwave Magazine, vol.11, no.5, pp.87–100.
[15] Narisi Wang, V. Yousefzadeh, D. Maksimovic, S. Pajic, Z. B. Popovic, ‘‘60% efficient 10-GHz power amplifier with dynamic drain bias control,’’ IEEE Transactions on Microwave Theory and Techniques, vol.52, no.3, pp. 1077–1081, March 2004.
[16] D. K. Su and W. J. McFarland, ‘‘An IC for linearizing RF power amplifiers using envelope elimination and restoration,’’ IEEE Journal of Solid-State Circuits, vol.33, no.12, pp.2252–2258, December 1998.
[17] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy,; Dongsoo Koh, D. Ripley, F. Balteanu, I. Gheorghe, ‘‘Quad-band GSM/GPRS/EDGE polar loop transmitter,’’ IEEE Journal of Solid-State Circuits, vol.39, no.12, pp. 2179–2189, December 2004.
[18] J. T. Stauth, “Energy efficient wireless transmitters: polar and direct-digital modulation architectures,’’ Ph.D. dissertation, University of California at Berkeley, 2008.
[19] F. Wang, D. Kimball, J. Popp, A. Yang, D. Y. C. Lie, P. Asbeck and L. E. Larson, “Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications,” IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, June 12–17, 2005.
[20] F. Wang, D. Kimball, J. Popp, A. Yang, D. Y. C. Lie, P. Asbeck and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Transactions on Microwave Theory and Techniques, vol.54, no.12, pp.4086–4099, December 2006.
[21] Yan Li, J. Lopez, P.-H. Wu, Weibo Hu, Ruili Wu, D. Y. C. Lie, “A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol.59, no.10, pp.2525–2536, October 2011.
[22] Yan Li, J. Lopez, D. Y. C. Lie, K. Chen, S. Wu, T.-Y. Yang, “SiGe class-E power amplifier with envelope tracking for mobile WiMAX/Wibro applications,” IEEE International Symposium on Circuits and Systems. ISCAS’ 09. May 2009, pp.2017–2020.
[23] F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, L. E. Larson, “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier,” IEEE Journal of Solid-State Circuits, vol.42, no.6, pp.1271–1281, June 2007.
[24] N. Schlumpf, M. Declercq, C. Dehollain, “A fast modulator for dynamic supply linear RF power amplifier,” IEEE Journal of Solid-State Circuit, vol.39, no.7, pp. 1015–1025, July 2004.
[25] B. Sahu, G. A. Rincon-Mora, “A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply,” IEEE Transactions on Microwave Theory and Techniques, vol.52, no.1, pp. 112–120, January 2004.
[26] H. Ertl, J. W. Kolar, F. C. Zach, “Basic considerations and topologies of switched-mode assisted linear power amplifiers,” IEEE Transactions on Industrial Electronics, vol.44, no.1, pp.116–123, February 1997.
[27] P. Midya, “Linear switcher combination with novel feedback,” Power Electronics Specialists Conference (PESC), June 2000, pp. 1425–1429.
[28] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, “Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1302-1305, May 23–26, 2005.
[29] R. A. R. van der Zee, E. A. J. M. van Tuijl, “A power-efficient audio amplifier combining switching and linear techniques,” IEEE Journal of Solid-State Circuits, vol.34, no.7, pp.985–991, July 1999.
[30] R. W. Erickson, Fundamentals of Power Electronics, 2nd ed. New York, USA: Kluwer Academic, 2001.
[31] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE Journal of Solid-State Circuits, vol.10, no.3, pp. 168–176, June 1975.
[32] F. H. Rabb, “Idealized operation of the class E tuned power amplifier,” IEEE Transactions on Circuits and Systems, vol.24, no.12, pp. 725–735, December 1977.
[33] M. Kazimierczuk, K. Puczko, “Exact analysis of class E tuned power amplifier at any Q and switch duty cycle,” IEEE Transactions on Circuits and Systems, vol.34, no.2, pp. 149–159, Feb 1987.
[34] F. H. Raab, N. O. Sokal, “Transistor power losses in the class E tuned power amplifier,” IEEE Journal of Solid-State Circuits, vol.13, no.6, pp. 912–914, December 1978.
[35] M. Kazimierczuk, “Effects of the collector current fall time on the class E tuned power amplifier,” IEEE Journal of Solid-State Circuit,
[36] R. E. Zulinski and J. W. Steadman, ‘‘Class E power amplifiers and frequency multipliers with finite DC-feed inductance,’’ IEEE Transactions on Circuits and Systems, vol. CAS-34, pp. 1074–1087, September 1987.
[37] A. V. Grebennikov and H. Jaeger, ‘‘Class E with Parallel Circuit—A new challenge for high-efficiency RF and microwave power amplifiers,’’ IEEE International Microwave System. Digest, 2002, pp. 1627–1630.
[38] I. Aoki, S. D. Kee, D. B. Rutledge, A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp.371–383, Mar 2002.
[39] K.-C. Tsai and P. R. Gray, “A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications,” IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp. 962–970, July 1999.
[40] C. Yoo and Q. Huang, “A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 823–830, May 2001.
[41] K. L. R. Mertens and M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier,” IEEE Journal of Solid-State Circuits, vol. 37, no. 2, pp. 137–141, February 2002.
[42] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 1.7-GHz 31dBm differential CMOS class-E power amplifier with 58% PAE,” IEEE 2007 Custom Integrated Circuits Conference, pp. 551–554, September 2007.
[43] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1755–1762, August 2008.
[44] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064–1075, May 2008.
[45] O. Lee, J. Han, K. H. An, D. H. Lee, K.-S. Lee, S. Hong, and C.-H. Lee, “A charging acceleration technique for highly efficient cascode class-E CMOS power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2184–2197, October 2010.
[46] A. Mazzanti, L. Larcher, R. Brama, and F. Svelto, “Analysis of reliability and power efficiency in cascode class-E PAs,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1222–1229, May 2006.
[47] K. Y. Son, C. Park, and S. Hong, “A 1.8-GHz CMOS power amplifier using stacked nMOS and pMOS structures for high-voltage operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2652–2660, November 2009.
[48] Y. Song, S. Lee, J. Lee, and S. Nam, “A 29 dBm CMOS class-E power amplifier with 63% PAE using negative capacitance,” IEEE Custom Integrated Circuits Conference, vol., pp. 399–402, September 2009.
[49] F. Wang, A. Yang, D. Kimball, L. Larson, and P. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244–1255, April 2005.
[50] J. Chen, K. U-yen, and J. S. Kenny, “An envelope elimination and restoration power amplifier using a CMOS dynamic power supply circuit,” IEEE MTT-S International Microwave Symposium Digest, 2004, pp. 1519-1522.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2012-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明