參考文獻 |
[1] Behzad Razavi, “RF Microelectronics”, Pearson, 2nd Ed., 2011.
[2] Behzad Razavi, “Design of integrated circuits for optical communications”, McGraw-Hill Science/Engineering/Math, 1st Ed., 2002.
[3] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification,” in Proc. I.R.E., vol. 36, Aug. 1948, pp. 956–969.
[4] H. Shigematsu, M. Sato, T. Hirose, and Y. Watanabe, “A 54-GHz distributed amplifier with 6-Vpp output for a 40-Gb/s LiNbO3 modulator driver,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1100–1105, Sep. 2002.
[5] P. Wolf, “Microwave properties of schottky-barrier field effect transistors,” IBM J. Res. Develop., pp. 125–141, Mar. 1970.
[6] C. Liechti, E. Gowen, and J. Cohen, “GaAs microwave schottky-gate FET,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb 1972, vol. 15, pp. 158–159.
[7] R. Minasian, “Simplified GaAs MESFET model to 10 GHz,” Elecron. Lett., vol. 13, no. 8, pp. 549–551, Sep. 1977.
[8] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1151–1159, Jul. 1988.
[9] M. Berroth and R. Bosch, “Broad-band determination of the FET smallsignal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 38, pp. 891–895, Jul. 1990.
[10] E. Arnold, M. Golio, M. Miller, and B. Beckwith, “Direct extraction of GaAs MESFET intrinsic element and parasitic inductance values,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1990, pp. 359–362.
[11] M. Berroth and R. Bosch, “High-frequency equivalent circuit of GaAs FET’s for large-signal applications,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 224–229, Feb. 1991.
[12] B. Hughes and P. J. Tasker, “Bias dependence of the MODFET intrinsic model elements values at microwave frequencies,” IEEE Trans. Electron Devices, vol. ED-36, pp. 2267–2273, Oct. 1989.
[13] H. O. Vickes, “Determination of intrinsic FET parameters using circuit partitioning approach,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 363–366, Feb. 1991.
[14] R. Anholt and S. Swirhum, “Equivalent-circuit parameter extraction for cold GaAs MESFET’s,” IEEE Trans. Microw. Theory Tech., vol. 38, pp. 1243–1247, Jul. 1991.
[15] G. Kompa and M. Novotny, “Highly consistent FET model parameter extractions based on broadband S-parameter measurements,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1992, pp. 293–296.
[16] S. Asai, F. Murai, and H. Kodera, “GaAs dual-gate schottky-barrier FET’’s for microwave frequencies,” IEEE Trans. Electron Devices, vol. ED-22, no. 10, pp. 897–904, Oct 1975.
[17] T. Furutsuka, M. Ogawa, and N.Kawamura, “GaAs dual-gate MESFET’’s”, IEEE Trans. Electron Devices, vol. ED-25, pp.580–586, Jun. 1978.
[18] B. Kim, H. Q. Tserng, and P. Saunier, “GaAs dual-gate FET for operation up to K-band,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 256–261, Mar. 1984.
[19] C. Tsironis, R. Meierer, “Equivalent circuit of GaAs dual gate MESFETs,” Elecron. Lett., vol. 17, no. 13, pp.477–479, Jun. 1981.
[20] C. Tsironis and R. Meierer, “Microwave wide-band model of GaAs dual gate MESFETs,” IEEE Trans. Microw. Theory Tech., vol. 30, no. 3, pp. 243–251, Mar. 1982.
[21] C. Licqurish, M. J. Howes, and C. M. Snowden, “A new model for the dual-gate GaAs MESFET,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 10, pp. 1497–1505, Oct. 1989.
[22] O. Pronić and V. Marković, “A wave approach to signal and noise modeling of dual-gate MESFET,” Microwaves, Radar and Wireless Communications 13th International Conference on, May 2000, vol. 1, pp.287–290.
[23] B. Kim, “Equivalent-circuit consideration of dual-gate MESFETs at high frequency,” Elecron. Lett., vol. 19, no. 17, pp.705–706, Aug. 1983.
[24] J. R. Scott and R. A. Minasian, “A simplified microwave model of the GaAs dual-gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 243–248, Mar. 1984.
[25] J. Dreifuss, A. Madjar, and A. Bar-lev, “New method for the analysis of dual-gate MESFET mixers,” IEE Proceedings Microwaves, Antennas and Propagation, vol. 134, no. 1, pp. 11–15, February 1987.
[26] C. Licqurish, M. J. Howes, and C. M. Snowden, “Dual gate FET modeling,” IEEE Colloquium on Microwave Devices, Fundamentals and Applications, pp. 2/1–2/7, 1988.
[27] A. Neubauer, T. Sporkmann, and I. Wolff, “A simple, physics based dual gate MESFET model for CAD applications in microwave frequencies,” in Eur. Microw. Conf., Sep. 1992, vol. 2, pp. 807–812.
[28] M. Ibrahim, B. Syrett, and J. Bennett, “A new analytical small-signal model of dual-gate GaAs MESFET,” in IEEE MTT-S Int. Microw. Symp. Dig., 2001, vol. 2, pp.1277–1280.
[29] D. Langrez, E. Delos, and G. Salmer, “Modelling of 0.15μm dual gate PM-HEMTs by using experimental extraction,” in Eur. Microw. Conf., Oct. 1994, pp. 355–360.
[30] M. Schoon, “A novel, bias-dependent, small-signal model of the dual-gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 2, pp. 212–216, Feb. 1994.
[31] S. Bashirzadeh, A. Nabavi, and M. Fardis, “GaAs DGMESFET modeling using SGMESFET models,” IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, pp. 202–206, Nov. 2005.
[32] W.-K. Deng and T.-H. Chu, “Elements extraction of GaAs dual-gate MESFET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2383–2390, Dec. 1998.
[33] J.-C. Chien and L.-H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2715–2725, Dec. 2007.
[34] J. Chen and A. M. Niknejad, “A stage-scaled distributed power amplifier achieving 110GHz bandwidth and 17.5dBm peak output power,” in RFIC Symp. Dig. Papers, May 2010, pp. 347–350.
[35] K. Moez and M. Elmasry, “A 10 dB 44 GHz loss-compensated CMOS distributed amplifier,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp. 548–549.
[36] A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 196–197.
[37] R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, S.-H. Wang and C.-P. Chao, “An 80GHz travelling-wave amplifier in a 90nm CMOS Technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb., 2005, pp. 154–155.
[38] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh and Y.-C. Wang, “Design and analysis of a DC–43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp.443–455, Feb. 2011.
[39] G. Wolf, S. Demichel, R. Leblanc, R. Lefevre, G. Dambrine, and H. Happy, “A metamorphic GaAs HEMT distributed amplifier with 50 GHz bandwidth and low noise for 40 Gbits/s,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 2231–2233.
[40] B. Y. Banyamin and M. Berwick, “Analysis of the performance of four-cascaded single-stage distributed amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp.2657–2663, Dec. 2000.
[41] M.-D. Tsai, H. Wang, J.-F. Kuan and C.-S. Chang, “A 70 GHz cascaded multi-stage distributed amplifier in 90 nm CMOS technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2005, pp. 402–403.
[42] K.-L. Deng, T.-W. Huang, and H. Wang, “Design and analysis of novel high-gain and broad-band GaAs PHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2188–2196, Nov. 2003.
[43] K.-L. Deng, H. Wang, C. Glaser, and M. G. Stubbs, “A miniature high gain and broadband MMIC distributed amplifier,” in Eur. Microw. Conf., Oct. 2003, vol. 2, pp. 615–618.
[44] C.-H. Lee, L.-C. Cho and S.-I Liu, “A 0.1-25.5-GHz differential cascaded-distributed amplifier in 0.18- μm CMOS technology,” in 2005 IEEE Asian Solid-State Circuits Conf., Nov. 2005, pp.129–132.
[45] H.-T. Ahn and D. J. Allstot, “A 0.5-8.5 GHz fully differential CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol.37, pp.985–993, Aug. 2002.
[46] A. Yazdi and P. Heydari, “The design and analysis of non-uniform down-sized differential distributed amplifiers,” 5th International Symposium on Quality Electronic Design, pp. 528–533, 2004.
[47] A. Yazdi, D. Lin, and P. Heydari, “A 1.8V three-stage 25GHz 3dB-BW differential non-uniform downsized distributed amplifier,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2005, vol. 1, pp. 156–590.
[48] J. F. Buckwalter, “A 35-GHz differential distributed loss-compensation amplifier,” in RFIC Symp. Dig. Papers, June 2008, pp. 211–214.
[49] S. Galal and B. Razavi, “40Gb/s amplifier and ESD protection circuit in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 2389–2396, Dec. 2004.
[50] D. Guckenberger and K. T. Kornegay, “Design of a differential distributed amplifier and oscillator using close-packed interleaved transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp.1997–2007, Oct. 2005.
[51] Y. Suzuki, Z. Yamazaki, and H. Hida, “An 80-Gb/s 2.7-Vpp driver IC based on functional distributed circuits for optical transmission systems,” in RFIC Symp. Dig. Papers, 2005, pp. 325–328.
[52] Y. Baeyens, N. Weimann, P. Roux, A. Leven, V. Houtsma, R. F. Kopf, Y. Yang, J. Frackoviak, A. Tate, J. S. Weiner, P. Paschke, and Y.-K. Chen, “High gain-bandwidth differential distributed InP D-HBT driver amplifiers with large (11.3 Vpp) output swing at 40 Gb/s,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1697–1705, Oct. 2004.
[53] C. Meliani and W. Heinrich, “True broadband technique for on-chipseries connection of TWAs using differential distributed amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 248–250, Apr. 2009.
[54] L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” IEEE Electron. Device Lett., vol. 7, no. 2, pp. 75–77, Feb. 1986.
[55] W. R. Curtice and R. L. Camisa, “Self-consistent GaAs FET models for amplifier design and device diagnostics,” IEEE Trans. Microw. Theory Tech., vol.32, pp. 1573–1578, Dec. 1984.
[56] H. Kondoh, “An accurate FET modeling from measured S-parameters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1986, pp. 377–380.
[57] R. Tayrani, J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rohde, “A new and reliable direct parasitic extraction method for MESFETs and HEMTs,” in Eur. Microw. Conf., Sep. 1993, pp. 451–453.
[58] P. M. White and R. M. Healy, “Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from cold FET measurements,” IEEE Microw. Guided Wave Lett., vol. 3, pp. 453–454, Dec. 1993.
[59] L. T. Wurtz, “GaAsFET and HEMT small-signal parameter extraction from measured S-parameters,” IEEE Trans. Instrum. Meas., vol. 43, pp. 655–658, Aug. 1994.
[60] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, “Accurate small signal modeling of HFET’s for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 3, pp. 432–437, Mar. 1996.
[61] S.-W. Chen, O. Aina, W. Li, L. Phelps, and T. Lee, “An accurately scaled small-signal model for interdigitated power P-HEMT up to 50 GHz,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 700–703, May 1997.
[62] B. L. Ooi and J. Y. Ma, “An improved but reliable model for MESFET parasitic capacitance extraction,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. A53–A56.
[63] H. Bagheri, “An improved MODFET microwave analysis,” IEEE Trans. Electron Devices, vol. ED-35, pp. 1147–1148, Jul. 1988.
[64] G. D. Vendelin, “Feedback effects in GaAs MESFET model,” IEEE Trans. Microw. Theory Tech., vol. 24, pp. 383–385, Jun. 1975.
[65] S. Yanagawa, H. Ishihara, and M. Ohtomo, “Analytical method for determining equivalent circuit parameters of GaAs FET’s,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1637–1641, Oct. 1996.
[66] J. A. Raskin-Hernandez, J. Apolinar, F. E. Rangel-Patino, F. Elias, and J. Perdomo, “Full RF characterization for extracting the small-signal equivalent circuit inmicrowave FET’s,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 2625–2633, Dec. 1996.
[67] A. Caddemi, N. Donato, and G. Crupi, “A robust approach for the direct extraction of HEMT circuit elements versus bias and temperature,” in IEEE Int. Telecommun. Modern Satellite, Cable, Broadcast. Syst. Conf., Oct. 2003, pp. 557–560.
[68] V. Sommer, “A new method to determine the source resistance of FET from measured S-parameters under active-bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 504–510, Mar. 1995.
[69] P. C. Walters, R. D. Pollard, J. R. Richardson, and G. Gatti, “Millimeter-wave device modeling differences in microstrip and coplanar waveguide.” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1993, pp. 1173–1176.
[70] K. Shirakawa, H. Oikawa, T. Shimura, Y. Kawasaki, Y. Ohashi, T. Saito, and Y. Daido, “An approach to determining an equivalent circuit for HEMT’s,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 499–503, Mar. 1995.
[71] M. Y. Jeon, B. G. Kim, Y. J. Jeon, and Y. H. Jeong, “A technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE Trans. Electron., vol. E82-C, pp.1968, 1999.
[72] C. F. Campbell and S. A. Brown, “An analytical method to determine GaAs FET parasitic inductances and drain resistance under active bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 1241–1247, Jul. 2001.
[73] N. Donato, A. Caddemi, G. Crupi, and E. Calandra, “Microwave characterization and modeling of packaged HEMT’s by a direct extraction procedure down to cryogenic temperature,” in Proc. IEEE Int. Conf. Instrumentation and Measurement Technology, May 2004, vol. 3, pp. 2208–2211.
[74] G. Yifan and G. Cong, “An improved method of microwave power MESFET modeling,” Asia-Pacific Microwave Conference Proceedings, Dec. 2005, vol. 1, pp. 4.
[75] A. Miras and E. Legros, “Very high-frequency small-signal equivalent circuit for short gate length InPHEMT’s,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1018–1026, Jul. 1997.
[76] S. Akhtar and S. Tiwari, “Non-Quasi-Static transient and small signal two-dimensional modeling of GaAs MESFETs with emphasis on distributed effects,” IEEE Trans. Electron Devices, vol. ED-40, no. 12, pp. 2154–2163, Dec 1993.
[77] S. Manohar, A. Pham, and N. Evers, “Dicect determination of the biasdependent series parasitic elements in SiC MESFETs,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 597–600, Feb. 2003.
[78] P. Jansen, D. Schreurs, W. de Raedt, B. Nauwelaers, and M. Van Rossum, “Consistent small-signal and large-signal extraction techniques for heterojunction FET’s,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 87–93, Jan. 1995.
[79] R. L. Vaitkus, “Alternatives to optimizer-based methods for microwave transistor small-signal equivalent circuit parameters and S-parameter errors,” in Workshop Measurement Techniques Microwave Device Characterization Modeling, Jun. 1990, pp. 38–52.
[80] W. Stiebler, M. Matthes, G. Böck, T. Köppel, and A. Schäfer, “Biasdependent ‘cold-(H)FET’ modeling,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1986, pp. 1313–1316.
[81] R. Singh and C. M. Snowden, “Small-signal characterization of microwave and millimeter-wave HEMT’s based on a physical model,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 1, pp. 114–121, Jan. 1996.
[82] A. Tessmann, W. H. Haydl, M. Neumann, S. Kudszus, and A. Hulsmann, “A coplanar W-band power amplifier MMIC using dual-gate HEMTs,” in Eur. Microw. Conf., Oct. 1999, pp. 246–249.
[83] M. Ibrahim, B. Syrett, and J. Bennett, “Simple and accurate technique for extracting the parasitic resistances of the dual-gate GaAs MESFET”, IEEE Microw. Wireless Compon. Lett., vol.12, pp.284–286, Aug. 2002.
[84] D. M. Pozar, “Microwave Engineering”, Chapter 8, 2nd Ed. New York: Wiley, 1998.
[85] D. A. Hodges, “Darlington’’s contributions to transistor circuit design,” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 46, no. 1, pp. 102–104, Jan. 1999.
[86] Sedra and Smith, “Microelectronic Circuits”, Oxford University press, 5th Ed., 2005.
[87] K. W. Lee, K. Lee; M. S. Shur, T. Vu Tho, P. C. T. Roberts, and M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in ion-implanted GaAs FET’’s,” IEEE Trans. Electron Devices, vol. ED-32, no. 5, pp. 987–992, May 1985.
[88] P. L. Hower and N. G. Bechtel, “Current saturation and small-signal characteristics of GaAs field-effect transistors,” IEEE Trans. Electron Devices, vol. ED-20, no. 3, pp. 213–220, Mar. 1973.
[89] F. Diamant and M. Laviron, “Measurement of the extrinsic series elements of a microwave MESFET under zero current condition,” in Eur. Microw. Conf., Oct. 1982, pp. 451–456.
[90] K. Lee, M. S. Shur, A. J. Valois, G. Y. Robinson, X. C. Zhu, and A. van der Ziel, “A new technique for characterization of the "End" resistance in modulation-doped FET’’s,” IEEE Trans. Electron Devices, vol. ED-31, no. 10, pp. 1394–1398, Oct. 1984.
[91] S. Chaudhuri and M. B. Das, “On the determination of source and drain series resistances of MESFET’’s,” IEEE Electron. Device Lett., vol. 5, no. 7, pp. 244–246, Jul. 1984.
[92] C. Liechti, “Performance of dual-gate GaAs MESFETs as gain-controlled low-noise amplifiers and high-speed modulators,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb 1975, vol. 18, pp. 64–65.
[93] A.-S. Chu, P.-T. Chen, “An osciplier up to K-band using dual-gate GaAs MESFET,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1980, pp.383–386.
[94] C. Tsironis, P. Harrop, and M. Bostelmann, “Active phase shifters at X band using GaAs MESFETs,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb 1981, vol. 24, pp. 140–141.
[95] Y. Kwon, D. Pavlidis, P. Marsh, G. T. Ng, T. Brock, and D. Streit, “A miniaturized W-band monolithic dual-gate InAlAs/InGaAs HEMT mixer,” in GaAs-IC Symp. Dig. Tech.Papers, Oct. 1993, pp. 215–218.
[96] W. R. Deal, M. Biedenbender, P-H. Liu, J. Uyeda, M. Siddiqui, and R. Lai, “Design and analysis of broadband dual-gate balanced low-noise amplifiers”, IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107–2115, Oct. 2007.
[97] Y. Baeyens, D. Schreurs, B. Nauwelaers, K. Van der Zanden, M. Van Hove, W. De Raedt, and M. Van Rossum, “GaAs and InP-based dual-gate HEMTs for high-gain MMIC amplifiers,” IEEE 1995 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, pp. 161–166, Nov. 1995.
[98] W. S. Percival, “Thermonic valve circuits,” British Patent, 460-562, Jan. 25, 1937.
[99] C.-K. Lin, S.-J. Li, S.-H. Tsai, C.-W. Wang, Y.-C. Wang, P.-H. Wu, and J.-Y. Li, “The monolithic integration of InGaAs PHEMT and InGaP HBT technology for single-chip WiMAX RF front-end module,” IEEE 54th International Midwest Symposium on Circuits and Systems, Aug. 2011, pp. 1–4.
[100] C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an original Kband active balun with improved broadband balanced behavior,” IEEE Microw.Wireless Compon. Lett., vol. 15, pp. 280–282, Apr. 2005.
[101] H. Shimomura, A. Matsuzawa, H. Kimura, G. Hayashi, T. Hirai, and A. Kanda, “A mesh-arrayed MOSFET (MA-MOS) for high-frequency analog applications,” in IEEE VLSI Symp. Dig. Tech. Papers, 1997, pp. 73–74.
[102] D. N. Green, “An improved miller effect model for high-frequency behavior,” IEEE Transactions on Education, vol. 28, no. 3, pp. 125–130, Aug. 1985.
|