博碩士論文 985201128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.117.75.6
姓名 陳汜華(Si-Hua Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
(Dual-gate Device Modeling and Microwave/Millimeter-Wave Distributed Amplifier Design)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 銻化物異質接面場效電晶體之研製及其微波切換器應用
★ 微波毫米波寬頻振盪器與鎖相迴路之研製★ 使用達靈頓對之單晶微波及毫米波寬頻電路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在通訊與多媒體的快速發展之下,對於高傳輸速率與高容量傳輸系統的需求也愈來愈高。隨著高傳輸速率的無線通訊市場的大量增加,積體電路設計的操作頻率也逐漸往微波與毫米波頻段發展。
論文第一章將簡短介紹射頻發射機與光通訊系統的傳輸系統。第二章第一部份先整理1970年迄今介紹FET等效小訊號模型的相關文獻,將單閘極元件模型歸納為7種主要類型。第二部份整理歷年來介紹關於雙閘極元件等效小訊號模型的文獻,歸納為4種主要小訊號模型,而雙閘極元件由於可以等效為兩個單閘極元件疊接,因此可以設計應用在高增益及寬頻的系統上。為了驗證單閘極及雙閘極元件模型,將於第三章應用第二章介紹的模型萃取方法,以砷化鎵0.5 μm增強/空乏模式電晶體元件進行設計及量測,分別重建2組單閘極小訊號模型與1組雙閘極元件模型。
西元1948年E. L. Ginzton提出的分佈式放大器,由於擁有高增益頻寬比,因此在寬頻放大器的應用上佔有舉足輕重的地位。第四章以一組雙閘極與單閘極元件進行疊接架構作為增益單元,應用電感提升與m衍生低通濾波器技術來增加高頻增益,最後再應用主動負載提供偏壓來減少直流功率損耗。第五章以砷化鎵0.5 μm HBT-HEMT製程設計一組以HEMT-HBT串接達靈頓對為增益單元,半電路為串聯單級分佈式放大器的差動達靈頓串聯單級分佈式放大器。相較於半電路為傳統式分佈式放大器的差動放大器,使用串聯單級分佈式放大器作為差動放大器的半電路能擁有更佳的共模拒斥比特性。第六章第一部份使用矽金氧半場效電晶體的0.18 μm SiGe BiCMOS製程,以NMOS與HBT兩種不同電晶體作為增益單元,應用疊接架構來降低輸入端等校雜散電容,並減少米勒效應(Miller effect)對電路的影響,最後設計出一組高頻寬的傳統分佈式放大器。由於串聯單級分佈式放大器的輸出功率受限於輸出端電晶體的大小,因此在第二部分使用矽金氧半場效電晶體的90 nm CMOS製程,以傳統分佈式放大器作為串聯單級分佈式放大器的輸出級電路來增加串聯單級分佈式放大器的輸出功率,設計出一組CSSDA-CDA組合式分佈式放大器。第七章為結論,為本論文所做的研究做一個總結。
摘要(英) The demands for high-speed and high-capacity transmission systems rapidly increase due to the development of multimedia communications in recent years. The increasing trend in modern wireless communications for high data-rate applications, especially for the analog and RF front-end is pushing the integrated circuits to operate in microwave and millimeter wave.
In this thesis, the introductions of RF transceiver and optical communication are given in Chapter 1. Since the device model of single-gate and dual-gate FETs are essential in the design of microwave circuits, seven kinds of single-gate small signal model and four kinds of dual-gate small signal model are generalized in Chapter 2. To analyze the characteristics of a 0.5 μm enhancement/depletion-mode (E/D-mode) GaAs process, two single-gate and a dual-gate small signal models based on the method introduced in Chapter 2 have been presented in Chapter 3.
The distributed amplifier (DA) is well known to be a good topology for ultra-wideband design after it was proposed by E. L. Ginzton in 1948. In Chapter 4, two conventional DAs with inductive peaking and m-derived technique, and a cascode configuration with a single-gate device and a dual-gate device is adopted for the gain cell to have the property of wideband and over 10 dB small-signal gain. An active load technique is used for the DC bias of the DA design to achieve low DC consumption. A Darlington differential cascaded single-stage DA (CSSDA) using a GaAs 0.5-μm HBT-HEMT process is presented in Chapter 5. To compare with the conventional DA (CDA), the CSSDA topology has better common-mode rejection ratio. To achieve the broadband design, two DAs with inductive peaking technique using Si-based process are presented in Chapter 6. In the first section, a CDA using 0.18 μm SiGe BiCMOS process and a cascode NMOS-HBT topology is used for the gain cell to decrease the Miller effect. The proposed DA has an average small-signal gain of 8.2 dB and a 3-dB bandwidth from DC to 31 GHz. To improve the output power of the CSSDA, a CSSDA-CDA composite DA using 90 nm CMOS process has been presented in the second section of Chapter 6. Finally, the conclusion is given in Chapter 7.
關鍵字(中) ★ 雙閘極元件
★ 分佈式放大器
★ 差動放大器
★ 串聯單級分佈式放大器
關鍵字(英) ★ dual-gate
★ distributed amplifier (DA)
★ differential amplifier
★ cascaded single-stage DA (CSSDA)
論文目次 中文摘要 I
Abstract III
誌謝 V
目錄 VIII
圖目錄 XIII
表目錄 XXI
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究發展 4
1.3 論文貢獻 5
1.4 論文架構 5
第二章 單閘極與雙閘極高速電子遷移率電晶體小訊號等效電路萃取方法文獻整理回顧 7
2.1 簡介 7
2.2 單閘極電晶體小訊號等效電路模型與參數萃取 9
2.2.1 早期小訊號等效電路模型 9
2.2.1.1 Wolf小訊號等效電路模型 9
2.2.1.2 Liechti-Minasian小訊號等效電路模型 10
2.2.2 小訊號等效電路模型 14
2.2.2.1 Dambrine et al.小訊號等效電路模型[8] 14
2.2.2.2 Hughes-Tasker小訊號等效電路模型[12] 15
2.2.2.3 Arnold et al.小訊號等效電路模型[10] 16
2.2.2.4 Berroth-Bosch小訊號等效電路模型[11] 17
2.2.2.5 Vickes小訊號等效電路模型[13] 19
2.2.2.6 Anholt-Swirhun小訊號等效電路模型[14] 20
2.2.2.7 Kompa-Novotny小訊號等效電路模型[15] 21
2.2.3 參數萃取流程簡介 22
2.2.4 外部寄生元件等效電路模型與參數萃取(冷偏壓模態) 24
2.2.4.1 冷偏壓模態通道導通 24
2.2.4.1.1 第一類型外部寄生元件 24
2.2.4.1.2 第二類型外部寄生元件 25
2.2.4.1.3 第三類型外部寄生元件 25
2.2.4.1.4 冷偏壓通道導通模型外部寄生元件歸納 26
2.2.4.2 冷偏壓模態通道夾止 27
2.2.4.2.1 Dambrine et al.冷偏壓通道夾止模型[8] 27
2.2.4.2.2 White-Healy冷偏壓通道夾止模型[58] 28
2.2.4.2.3 Tayrani et al.冷偏壓通道夾止模型[57] 30
2.2.4.2.4 Stiebler et al.冷偏壓通道夾止模型[80] 31
2.2.4.2.5 Ooi-Ma冷偏壓通道夾止模型[62] 33
2.2.4.2.6 冷偏壓通道夾止模型外部寄生元件歸納 35
2.2.5 內部本質元件參數萃取(熱偏壓模態) 36
2.2.5.1 第一類型內部本質元件 36
2.2.5.2 第二類型內部本質元件 38
2.2.5.3 第三類型內部本質元件 39
2.2.5.4 第四類型內部本質元件 41
2.2.5.5 熱偏壓模態內部本質元件歸納 43
2.3 雙閘極電晶體小訊號等效電路模型與參數萃取 43
2.3.1 雙閘極小訊號電路等效模型 44
2.3.1.1 Asai et al.雙閘極小訊號等效電路模型(型1) 44
2.3.1.2 Tsironis-Meierer雙閘極小訊號等效電路模型(型2) 45
2.3.1.3 Kim雙閘極小訊號等效電路模型(型3) 46
2.3.1.4 Langrez et al.雙閘極小訊號等效電路模型(型4) 47
2.3.2 參數萃取流程簡介 48
2.3.3 外部寄生元件參數萃取(冷偏壓模態) 49
2.3.3.1 冷偏壓模態通道夾止 49
2.3.3.2 冷偏壓模態通道導通 50
2.3.3.2.1 外部寄生電阻與級間電阻 50
2.3.3.2.2 外部寄生電感[29] 54
2.3.4 內部本質元件參數萃取(熱偏壓模態) 54
2.3.4.1 忽略R12-Scott-Minasian雙閘極內部元件模型[24] 54
2.3.4.2 考慮R12-Ibrahim et al.雙閘極內部元件模型[28] 57
2.4 結論 61
第三章 單閘極與雙閘極假晶格(Pseudomorphic)高速電子遷移率電晶體之小訊號模型建立 64
3.1 簡介 64
3.2 單閘極增強型與空乏型電晶體小訊號模型建立 64
3.2.1 單閘極元件參數 64
3.2.2 冷偏壓模態(Cold mode)外部參數萃取 67
3.2.2.1 冷偏壓模態通道導通VGS>Vth 67
3.2.2.2 冷偏壓模態通道夾止VGS<Vp 78
3.2.3 熱偏壓模態(Hot mode)內部參數萃取 80
3.2.4 模型建立結果 86
3.2.5 比例規則(Scaling Factors Rules) 90
3.3 雙閘極增強/空乏型電晶體小訊號模型建立 91
3.3.1 雙閘極元件參數 91
3.3.2 冷偏壓模態(Cold mode)外部參數萃取 95
3.3.2.1 冷偏壓模態通道導通VGS>Vth 95
3.3.2.2 冷偏壓模態通道夾止VGS<Vp 102
3.3.3 增強/空乏型雙閘極內部參數 106
3.3.4 模型建立結果 106
3.4 結論 109
第四章 雙閘極疊接分佈式放大器設計 110
4.1 簡介 110
4.2 雙閘極疊接分佈式放大器設計概念 111
4.2.1 傳統分佈式放大器[33][84] 111
4.2.2 常數k與m衍生濾波器技術 116
4.2.3 主動式負載 122
4.3 雙閘極疊接分佈式放大器設計流程 124
4.3.1 增益單元的設計 124
4.3.2 m衍生濾波器與電感提升技術的設計 125
4.3.3 主動式負載的設計 127
4.3.4 設計流程圖 128
4.4 雙閘極疊接分佈式放大器模擬結果與佈局 129
4.4.1 六級雙閘極疊接分佈式放大器模擬結果與佈局圖 129
4.4.2 八級雙閘極疊接分佈式放大器模擬結果與佈局圖 133
4.5 雙閘極疊接分佈式放大器量測結果 136
4.5.1 六級雙閘極疊接分佈式放大器量測結果 136
4.5.2 八級雙閘極疊接分佈式放大器量測結果 140
4.6 結論 145
第五章 差動達靈頓對串聯單級分佈式放大器設計 147
5.1 簡介 147
5.2 差動達靈頓對串聯單級分佈式放大器設計概念 148
5.2.1 HBT-HEMT製程介紹 148
5.2.2 串聯單級分佈式放大器 149
5.2.3 達靈頓對 150
5.2.4 電流源 151
5.2.5 共模拒斥比(CMRR) 151
5.3 差動達靈頓對串聯單級分佈式放大器設計流程 152
5.3.1 增益單元的設計 152
5.3.2 電流源的設計 154
5.3.3 設計流程圖 154
5.4 差動達靈頓對串聯單級分佈式放大器模擬結果與佈局 156
5.4.1 混合模式(Mixed-Mode) 157
5.4.2 單端輸入-輸出模式(Single-ended–Single-ended Mode) 161
5.4.3 電路佈局圖 162
5.5 差動達靈頓對串聯單級分佈式放大器量測結果 163
5.5.1 混合模式(Mixed-Mode) 164
5.5.2 單端輸入-輸出模式(Single-ended–Single-ended Mode) 168
5.5.3 實作晶片圖與量測眼圖 169
5.6 結論 172
第六章 應用互補式金屬氧化物半導體製程設計分佈式放大器 173
6.1 簡介 173
6.2 雙載子互補式金氧半電晶體疊接分佈式放大器 174
6.2.1 台積電0.18 μm SiGe BiCMOS製程技術 174
6.2.2 雙載子互補式金氧半電晶體疊接分佈式放大器設計概念 174
6.2.3 雙載子互補式金氧半電晶體疊接分佈式放大器設計流程 177
6.2.3.1 疊接架構的選擇 177
6.2.3.2 級數的選擇 178
6.2.3.3 m衍生T接面低通濾波器 178
6.2.3.4 主動式負載的選擇 179
6.2.3.5 設計流程圖 179
6.2.4 雙載子互補式金氧半電晶體疊接分佈式放大器模擬結果與佈局 180
6.2.5 雙載子互補式金氧半電晶體疊接分佈式放大器量測結果與除錯 184
6.2.5.1 量測結果 184
6.2.5.2 電路除錯 188
6.2.6 文獻比較表 196
6.3 組合分佈式放大器 197
6.3.1 台積電90 nm CMOS製程技術 197
6.3.2 組合分佈式放大器設計概念 197
6.3.3 組合分佈式放大器設計流程 198
6.3.3.1 m衍生T接面低通濾波器 198
6.3.3.2 串聯單級分佈式放大器設計 198
6.3.3.3 傳統分佈式放大器設計 200
6.3.3.4 設計流程圖 203
6.3.4 組合分佈式放大器模擬結果與佈局 204
6.3.5 組合分佈式放大器量測結果與除錯 207
6.3.5.1 量測結果 207
6.3.5.2 電路除錯 212
6.3.6 文獻比較表 219
6.4 結論 220
第七章 結論 221
參考文獻 223
參考文獻 [1] Behzad Razavi, “RF Microelectronics”, Pearson, 2nd Ed., 2011.
[2] Behzad Razavi, “Design of integrated circuits for optical communications”, McGraw-Hill Science/Engineering/Math, 1st Ed., 2002.
[3] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification,” in Proc. I.R.E., vol. 36, Aug. 1948, pp. 956–969.
[4] H. Shigematsu, M. Sato, T. Hirose, and Y. Watanabe, “A 54-GHz distributed amplifier with 6-Vpp output for a 40-Gb/s LiNbO3 modulator driver,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1100–1105, Sep. 2002.
[5] P. Wolf, “Microwave properties of schottky-barrier field effect transistors,” IBM J. Res. Develop., pp. 125–141, Mar. 1970.
[6] C. Liechti, E. Gowen, and J. Cohen, “GaAs microwave schottky-gate FET,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb 1972, vol. 15, pp. 158–159.
[7] R. Minasian, “Simplified GaAs MESFET model to 10 GHz,” Elecron. Lett., vol. 13, no. 8, pp. 549–551, Sep. 1977.
[8] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1151–1159, Jul. 1988.
[9] M. Berroth and R. Bosch, “Broad-band determination of the FET smallsignal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 38, pp. 891–895, Jul. 1990.
[10] E. Arnold, M. Golio, M. Miller, and B. Beckwith, “Direct extraction of GaAs MESFET intrinsic element and parasitic inductance values,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1990, pp. 359–362.
[11] M. Berroth and R. Bosch, “High-frequency equivalent circuit of GaAs FET’s for large-signal applications,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 224–229, Feb. 1991.
[12] B. Hughes and P. J. Tasker, “Bias dependence of the MODFET intrinsic model elements values at microwave frequencies,” IEEE Trans. Electron Devices, vol. ED-36, pp. 2267–2273, Oct. 1989.
[13] H. O. Vickes, “Determination of intrinsic FET parameters using circuit partitioning approach,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 363–366, Feb. 1991.
[14] R. Anholt and S. Swirhum, “Equivalent-circuit parameter extraction for cold GaAs MESFET’s,” IEEE Trans. Microw. Theory Tech., vol. 38, pp. 1243–1247, Jul. 1991.
[15] G. Kompa and M. Novotny, “Highly consistent FET model parameter extractions based on broadband S-parameter measurements,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1992, pp. 293–296.
[16] S. Asai, F. Murai, and H. Kodera, “GaAs dual-gate schottky-barrier FET’’s for microwave frequencies,” IEEE Trans. Electron Devices, vol. ED-22, no. 10, pp. 897–904, Oct 1975.
[17] T. Furutsuka, M. Ogawa, and N.Kawamura, “GaAs dual-gate MESFET’’s”, IEEE Trans. Electron Devices, vol. ED-25, pp.580–586, Jun. 1978.
[18] B. Kim, H. Q. Tserng, and P. Saunier, “GaAs dual-gate FET for operation up to K-band,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 256–261, Mar. 1984.
[19] C. Tsironis, R. Meierer, “Equivalent circuit of GaAs dual gate MESFETs,” Elecron. Lett., vol. 17, no. 13, pp.477–479, Jun. 1981.
[20] C. Tsironis and R. Meierer, “Microwave wide-band model of GaAs dual gate MESFETs,” IEEE Trans. Microw. Theory Tech., vol. 30, no. 3, pp. 243–251, Mar. 1982.
[21] C. Licqurish, M. J. Howes, and C. M. Snowden, “A new model for the dual-gate GaAs MESFET,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 10, pp. 1497–1505, Oct. 1989.
[22] O. Pronić and V. Marković, “A wave approach to signal and noise modeling of dual-gate MESFET,” Microwaves, Radar and Wireless Communications 13th International Conference on, May 2000, vol. 1, pp.287–290.
[23] B. Kim, “Equivalent-circuit consideration of dual-gate MESFETs at high frequency,” Elecron. Lett., vol. 19, no. 17, pp.705–706, Aug. 1983.
[24] J. R. Scott and R. A. Minasian, “A simplified microwave model of the GaAs dual-gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 3, pp. 243–248, Mar. 1984.
[25] J. Dreifuss, A. Madjar, and A. Bar-lev, “New method for the analysis of dual-gate MESFET mixers,” IEE Proceedings Microwaves, Antennas and Propagation, vol. 134, no. 1, pp. 11–15, February 1987.
[26] C. Licqurish, M. J. Howes, and C. M. Snowden, “Dual gate FET modeling,” IEEE Colloquium on Microwave Devices, Fundamentals and Applications, pp. 2/1–2/7, 1988.
[27] A. Neubauer, T. Sporkmann, and I. Wolff, “A simple, physics based dual gate MESFET model for CAD applications in microwave frequencies,” in Eur. Microw. Conf., Sep. 1992, vol. 2, pp. 807–812.
[28] M. Ibrahim, B. Syrett, and J. Bennett, “A new analytical small-signal model of dual-gate GaAs MESFET,” in IEEE MTT-S Int. Microw. Symp. Dig., 2001, vol. 2, pp.1277–1280.
[29] D. Langrez, E. Delos, and G. Salmer, “Modelling of 0.15μm dual gate PM-HEMTs by using experimental extraction,” in Eur. Microw. Conf., Oct. 1994, pp. 355–360.
[30] M. Schoon, “A novel, bias-dependent, small-signal model of the dual-gate MESFET,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 2, pp. 212–216, Feb. 1994.
[31] S. Bashirzadeh, A. Nabavi, and M. Fardis, “GaAs DGMESFET modeling using SGMESFET models,” IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, pp. 202–206, Nov. 2005.
[32] W.-K. Deng and T.-H. Chu, “Elements extraction of GaAs dual-gate MESFET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2383–2390, Dec. 1998.
[33] J.-C. Chien and L.-H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2715–2725, Dec. 2007.
[34] J. Chen and A. M. Niknejad, “A stage-scaled distributed power amplifier achieving 110GHz bandwidth and 17.5dBm peak output power,” in RFIC Symp. Dig. Papers, May 2010, pp. 347–350.
[35] K. Moez and M. Elmasry, “A 10 dB 44 GHz loss-compensated CMOS distributed amplifier,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp. 548–549.
[36] A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 196–197.
[37] R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, S.-H. Wang and C.-P. Chao, “An 80GHz travelling-wave amplifier in a 90nm CMOS Technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb., 2005, pp. 154–155.
[38] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh and Y.-C. Wang, “Design and analysis of a DC–43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp.443–455, Feb. 2011.
[39] G. Wolf, S. Demichel, R. Leblanc, R. Lefevre, G. Dambrine, and H. Happy, “A metamorphic GaAs HEMT distributed amplifier with 50 GHz bandwidth and low noise for 40 Gbits/s,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 2231–2233.
[40] B. Y. Banyamin and M. Berwick, “Analysis of the performance of four-cascaded single-stage distributed amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp.2657–2663, Dec. 2000.
[41] M.-D. Tsai, H. Wang, J.-F. Kuan and C.-S. Chang, “A 70 GHz cascaded multi-stage distributed amplifier in 90 nm CMOS technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2005, pp. 402–403.
[42] K.-L. Deng, T.-W. Huang, and H. Wang, “Design and analysis of novel high-gain and broad-band GaAs PHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2188–2196, Nov. 2003.
[43] K.-L. Deng, H. Wang, C. Glaser, and M. G. Stubbs, “A miniature high gain and broadband MMIC distributed amplifier,” in Eur. Microw. Conf., Oct. 2003, vol. 2, pp. 615–618.
[44] C.-H. Lee, L.-C. Cho and S.-I Liu, “A 0.1-25.5-GHz differential cascaded-distributed amplifier in 0.18- μm CMOS technology,” in 2005 IEEE Asian Solid-State Circuits Conf., Nov. 2005, pp.129–132.
[45] H.-T. Ahn and D. J. Allstot, “A 0.5-8.5 GHz fully differential CMOS distributed amplifier,” IEEE J. Solid-State Circuits, vol.37, pp.985–993, Aug. 2002.
[46] A. Yazdi and P. Heydari, “The design and analysis of non-uniform down-sized differential distributed amplifiers,” 5th International Symposium on Quality Electronic Design, pp. 528–533, 2004.
[47] A. Yazdi, D. Lin, and P. Heydari, “A 1.8V three-stage 25GHz 3dB-BW differential non-uniform downsized distributed amplifier,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2005, vol. 1, pp. 156–590.
[48] J. F. Buckwalter, “A 35-GHz differential distributed loss-compensation amplifier,” in RFIC Symp. Dig. Papers, June 2008, pp. 211–214.
[49] S. Galal and B. Razavi, “40Gb/s amplifier and ESD protection circuit in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 2389–2396, Dec. 2004.
[50] D. Guckenberger and K. T. Kornegay, “Design of a differential distributed amplifier and oscillator using close-packed interleaved transmission lines,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp.1997–2007, Oct. 2005.
[51] Y. Suzuki, Z. Yamazaki, and H. Hida, “An 80-Gb/s 2.7-Vpp driver IC based on functional distributed circuits for optical transmission systems,” in RFIC Symp. Dig. Papers, 2005, pp. 325–328.
[52] Y. Baeyens, N. Weimann, P. Roux, A. Leven, V. Houtsma, R. F. Kopf, Y. Yang, J. Frackoviak, A. Tate, J. S. Weiner, P. Paschke, and Y.-K. Chen, “High gain-bandwidth differential distributed InP D-HBT driver amplifiers with large (11.3 Vpp) output swing at 40 Gb/s,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1697–1705, Oct. 2004.
[53] C. Meliani and W. Heinrich, “True broadband technique for on-chipseries connection of TWAs using differential distributed amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 248–250, Apr. 2009.
[54] L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” IEEE Electron. Device Lett., vol. 7, no. 2, pp. 75–77, Feb. 1986.
[55] W. R. Curtice and R. L. Camisa, “Self-consistent GaAs FET models for amplifier design and device diagnostics,” IEEE Trans. Microw. Theory Tech., vol.32, pp. 1573–1578, Dec. 1984.
[56] H. Kondoh, “An accurate FET modeling from measured S-parameters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1986, pp. 377–380.
[57] R. Tayrani, J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rohde, “A new and reliable direct parasitic extraction method for MESFETs and HEMTs,” in Eur. Microw. Conf., Sep. 1993, pp. 451–453.
[58] P. M. White and R. M. Healy, “Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from cold FET measurements,” IEEE Microw. Guided Wave Lett., vol. 3, pp. 453–454, Dec. 1993.
[59] L. T. Wurtz, “GaAsFET and HEMT small-signal parameter extraction from measured S-parameters,” IEEE Trans. Instrum. Meas., vol. 43, pp. 655–658, Aug. 1994.
[60] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, “Accurate small signal modeling of HFET’s for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 3, pp. 432–437, Mar. 1996.
[61] S.-W. Chen, O. Aina, W. Li, L. Phelps, and T. Lee, “An accurately scaled small-signal model for interdigitated power P-HEMT up to 50 GHz,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 5, pp. 700–703, May 1997.
[62] B. L. Ooi and J. Y. Ma, “An improved but reliable model for MESFET parasitic capacitance extraction,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. A53–A56.
[63] H. Bagheri, “An improved MODFET microwave analysis,” IEEE Trans. Electron Devices, vol. ED-35, pp. 1147–1148, Jul. 1988.
[64] G. D. Vendelin, “Feedback effects in GaAs MESFET model,” IEEE Trans. Microw. Theory Tech., vol. 24, pp. 383–385, Jun. 1975.
[65] S. Yanagawa, H. Ishihara, and M. Ohtomo, “Analytical method for determining equivalent circuit parameters of GaAs FET’s,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1637–1641, Oct. 1996.
[66] J. A. Raskin-Hernandez, J. Apolinar, F. E. Rangel-Patino, F. Elias, and J. Perdomo, “Full RF characterization for extracting the small-signal equivalent circuit inmicrowave FET’s,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 2625–2633, Dec. 1996.
[67] A. Caddemi, N. Donato, and G. Crupi, “A robust approach for the direct extraction of HEMT circuit elements versus bias and temperature,” in IEEE Int. Telecommun. Modern Satellite, Cable, Broadcast. Syst. Conf., Oct. 2003, pp. 557–560.
[68] V. Sommer, “A new method to determine the source resistance of FET from measured S-parameters under active-bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 504–510, Mar. 1995.
[69] P. C. Walters, R. D. Pollard, J. R. Richardson, and G. Gatti, “Millimeter-wave device modeling differences in microstrip and coplanar waveguide.” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1993, pp. 1173–1176.
[70] K. Shirakawa, H. Oikawa, T. Shimura, Y. Kawasaki, Y. Ohashi, T. Saito, and Y. Daido, “An approach to determining an equivalent circuit for HEMT’s,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 499–503, Mar. 1995.
[71] M. Y. Jeon, B. G. Kim, Y. J. Jeon, and Y. H. Jeong, “A technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE Trans. Electron., vol. E82-C, pp.1968, 1999.
[72] C. F. Campbell and S. A. Brown, “An analytical method to determine GaAs FET parasitic inductances and drain resistance under active bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 1241–1247, Jul. 2001.
[73] N. Donato, A. Caddemi, G. Crupi, and E. Calandra, “Microwave characterization and modeling of packaged HEMT’s by a direct extraction procedure down to cryogenic temperature,” in Proc. IEEE Int. Conf. Instrumentation and Measurement Technology, May 2004, vol. 3, pp. 2208–2211.
[74] G. Yifan and G. Cong, “An improved method of microwave power MESFET modeling,” Asia-Pacific Microwave Conference Proceedings, Dec. 2005, vol. 1, pp. 4.
[75] A. Miras and E. Legros, “Very high-frequency small-signal equivalent circuit for short gate length InPHEMT’s,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1018–1026, Jul. 1997.
[76] S. Akhtar and S. Tiwari, “Non-Quasi-Static transient and small signal two-dimensional modeling of GaAs MESFETs with emphasis on distributed effects,” IEEE Trans. Electron Devices, vol. ED-40, no. 12, pp. 2154–2163, Dec 1993.
[77] S. Manohar, A. Pham, and N. Evers, “Dicect determination of the biasdependent series parasitic elements in SiC MESFETs,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 597–600, Feb. 2003.
[78] P. Jansen, D. Schreurs, W. de Raedt, B. Nauwelaers, and M. Van Rossum, “Consistent small-signal and large-signal extraction techniques for heterojunction FET’s,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 87–93, Jan. 1995.
[79] R. L. Vaitkus, “Alternatives to optimizer-based methods for microwave transistor small-signal equivalent circuit parameters and S-parameter errors,” in Workshop Measurement Techniques Microwave Device Characterization Modeling, Jun. 1990, pp. 38–52.
[80] W. Stiebler, M. Matthes, G. Böck, T. Köppel, and A. Schäfer, “Biasdependent ‘cold-(H)FET’ modeling,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1986, pp. 1313–1316.
[81] R. Singh and C. M. Snowden, “Small-signal characterization of microwave and millimeter-wave HEMT’s based on a physical model,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 1, pp. 114–121, Jan. 1996.
[82] A. Tessmann, W. H. Haydl, M. Neumann, S. Kudszus, and A. Hulsmann, “A coplanar W-band power amplifier MMIC using dual-gate HEMTs,” in Eur. Microw. Conf., Oct. 1999, pp. 246–249.
[83] M. Ibrahim, B. Syrett, and J. Bennett, “Simple and accurate technique for extracting the parasitic resistances of the dual-gate GaAs MESFET”, IEEE Microw. Wireless Compon. Lett., vol.12, pp.284–286, Aug. 2002.
[84] D. M. Pozar, “Microwave Engineering”, Chapter 8, 2nd Ed. New York: Wiley, 1998.
[85] D. A. Hodges, “Darlington’’s contributions to transistor circuit design,” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 46, no. 1, pp. 102–104, Jan. 1999.
[86] Sedra and Smith, “Microelectronic Circuits”, Oxford University press, 5th Ed., 2005.
[87] K. W. Lee, K. Lee; M. S. Shur, T. Vu Tho, P. C. T. Roberts, and M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in ion-implanted GaAs FET’’s,” IEEE Trans. Electron Devices, vol. ED-32, no. 5, pp. 987–992, May 1985.
[88] P. L. Hower and N. G. Bechtel, “Current saturation and small-signal characteristics of GaAs field-effect transistors,” IEEE Trans. Electron Devices, vol. ED-20, no. 3, pp. 213–220, Mar. 1973.
[89] F. Diamant and M. Laviron, “Measurement of the extrinsic series elements of a microwave MESFET under zero current condition,” in Eur. Microw. Conf., Oct. 1982, pp. 451–456.
[90] K. Lee, M. S. Shur, A. J. Valois, G. Y. Robinson, X. C. Zhu, and A. van der Ziel, “A new technique for characterization of the "End" resistance in modulation-doped FET’’s,” IEEE Trans. Electron Devices, vol. ED-31, no. 10, pp. 1394–1398, Oct. 1984.
[91] S. Chaudhuri and M. B. Das, “On the determination of source and drain series resistances of MESFET’’s,” IEEE Electron. Device Lett., vol. 5, no. 7, pp. 244–246, Jul. 1984.
[92] C. Liechti, “Performance of dual-gate GaAs MESFETs as gain-controlled low-noise amplifiers and high-speed modulators,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb 1975, vol. 18, pp. 64–65.
[93] A.-S. Chu, P.-T. Chen, “An osciplier up to K-band using dual-gate GaAs MESFET,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1980, pp.383–386.
[94] C. Tsironis, P. Harrop, and M. Bostelmann, “Active phase shifters at X band using GaAs MESFETs,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb 1981, vol. 24, pp. 140–141.
[95] Y. Kwon, D. Pavlidis, P. Marsh, G. T. Ng, T. Brock, and D. Streit, “A miniaturized W-band monolithic dual-gate InAlAs/InGaAs HEMT mixer,” in GaAs-IC Symp. Dig. Tech.Papers, Oct. 1993, pp. 215–218.
[96] W. R. Deal, M. Biedenbender, P-H. Liu, J. Uyeda, M. Siddiqui, and R. Lai, “Design and analysis of broadband dual-gate balanced low-noise amplifiers”, IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107–2115, Oct. 2007.
[97] Y. Baeyens, D. Schreurs, B. Nauwelaers, K. Van der Zanden, M. Van Hove, W. De Raedt, and M. Van Rossum, “GaAs and InP-based dual-gate HEMTs for high-gain MMIC amplifiers,” IEEE 1995 Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, pp. 161–166, Nov. 1995.
[98] W. S. Percival, “Thermonic valve circuits,” British Patent, 460-562, Jan. 25, 1937.
[99] C.-K. Lin, S.-J. Li, S.-H. Tsai, C.-W. Wang, Y.-C. Wang, P.-H. Wu, and J.-Y. Li, “The monolithic integration of InGaAs PHEMT and InGaP HBT technology for single-chip WiMAX RF front-end module,” IEEE 54th International Midwest Symposium on Circuits and Systems, Aug. 2011, pp. 1–4.
[100] C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an original Kband active balun with improved broadband balanced behavior,” IEEE Microw.Wireless Compon. Lett., vol. 15, pp. 280–282, Apr. 2005.
[101] H. Shimomura, A. Matsuzawa, H. Kimura, G. Hayashi, T. Hirai, and A. Kanda, “A mesh-arrayed MOSFET (MA-MOS) for high-frequency analog applications,” in IEEE VLSI Symp. Dig. Tech. Papers, 1997, pp. 73–74.
[102] D. N. Green, “An improved miller effect model for high-frequency behavior,” IEEE Transactions on Education, vol. 28, no. 3, pp. 125–130, Aug. 1985.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2012-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明