博碩士論文 992206006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.144.99.39
姓名 林峻平(Chun-ping Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
(Effects of ion-soaking treatment with CdS buffer layer on CIGS thin film solar cell)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 掃描式白光干涉儀應用在量測薄膜之光學常數★ 量子點窄帶濾光片
★ 以量測反射係術探測光學薄膜之特性★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究
★ 軟性電子阻水氣膜之有機層組成研究★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在近代的研究中,有文獻提到以化學水浴法沉積CdS薄膜在CIGS上會有鎘離子擴散進CIGS薄膜的現象,更有文獻證實了這種現象會使CIGS表面的特性由p-type轉換成n-type (n-CIGS:Cd),因此會在CIGS薄膜表面的內部形成pn-junction,而這樣的好處是空乏區內的缺陷少,以及增加CIGS薄膜內部更深位置的電子電洞對收集量。所以有很多研究為了增加n-CIGS:Cd的厚度,於是先將CIGS薄膜浸泡在含鎘離子的溶液中,使鎘離子自然的擴散到CIGS薄膜表面,然後再沉積CdS薄膜,不過沒有文獻明確的指出如何判別鎘離子對CIGS薄膜的擴散程度為何時,對CIGS薄膜為最好的有效參雜結果。
本實驗利用XPS與PL的量測,分析出在不同的鎘離子擴散參數下,為達到最好的有效參雜所需後退火200℃的時間。除此之外,我們在量測分析的結果中發現到實驗中硫離子對CIGS薄膜的擴散也會造成好的影響,並且分析出對CIGS薄膜有最好的影響的硫離子擴散程度。
摘要(英) In the recent research, there were documents mentioned that the cadmium ion will diffuse on the surface of the CIGS thin film by depositing the CdS thin film on the CIGS thin film with chemical bath deposition (CBD). The other documents confirmed the properties of the CIGS on surface were transferred from p-type to n-type (n-CIGS:Cd). This would form the pn-junction inside the CIGS thin film, and there were benefits on fewer defects in depletion region and more Electron-hole pairs collected in the deeper position inside of the CIGS thin film. There were many research used prior the ion-soaking solution to diffuse cadmium ion into the CIGS thin film to deposit CdS thin film on CIGS thin film for increasing the thickness of n-CIGS:Cd, but no one could indicate clearly what the degree of the cadmium ion diffused into the CIGS thin film would have the best effectively doping for the CIGS thin film.
In this experiment, we found the method to distinguish how long did the different parameter of the cadmium diffused into the CIGS thin film post-annealing at 200℃ need to be the best effectively doping for the CIGS thin film by the analysis of the X-ray Photoelectron Spectrometer (XPS) and the Photoluminescence spectrum (PL). In addition, we found the sulfur ion diffused into the CIGS thin film would affect the CIGS thin film better, and what the degree of the sulfur ion diffused into the CIGS thin film would have the best affect to the CIGS thin film.
關鍵字(中) ★ 硫化鎘
★ 離子擴散
★ CIGS元件
關鍵字(英) ★ CdS
★ CIGS
★ ion
★ soaking
論文目次 第一章 緒論.................................................1
1-1 背景...................................................1
1-2 文獻回顧................................................2
1-2-1 吸收層CIGS的介紹......................................4
1-2-2 緩衝層的介紹..........................................8
1-3 研究動機...............................................12
第二章 基礎理論............................................14
2-1 太陽能電池基礎理論......................................14
2-2 CdS的化學水浴法成膜原理.................................18
2-2-1 化學水浴沉積法介紹....................................18
2-2-2 硫化鎘成膜機制.......................................19
2-3 量測儀器原理...........................................21
2-3-1 X-ray光電子能譜儀原理.................................21
2-3-2 光激發螢光原理.......................................22
第三章 實驗步驟與方法.......................................24
3-1 基板清洗...............................................24
3-2 實驗方法與裝置.........................................25
3-2-1 化學水浴法沉積硫化鎘方法...............................26
3-2-2 鎘擴散方法...........................................26
3-3 實驗量測...............................................27
3-3-1 X-ray光電子能譜儀量測.................................27
3-3-2 螢光光譜量測.........................................28
第四章 實驗結果與討論.......................................29
4-1 實驗(一)─硫化鎘........................................29
4-2 實驗(二)─CIGS太陽能電池元件.............................39
4-3 實驗(三)─鎘離子擴散.....................................45
第五章 結論................................................60
參考文獻...................................................61
參考文獻 [1] T. Nakada and A. Kunioka, “Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films”, Appl. Phys. Lett. 74, 2444 (1999).
[2] Phil Won Yu, S. P. Faile, and Y. S. Park, “Cadmium−diffused CuInSe2 junction diode and photovoltaic detection”, Appl. Phys. Lett. 26, 384 (1975).
[3] R. Hunger, T. Schulmeyer, A. Klein, W. Jaegermann, M.V. Lebedev, K. Sakurai, S. Niki, “SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers”, Thin Solid Films 480–481 (2005) 218–223.
[4] Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Prog. Photovolt: Res. Appl. 2011; 19:894–897.
[5] D. Hariskos, S. Spiering, M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films 480–481 (2005) 99– 109.
[6] S.S. Li, B. Stanbery, C.H. Huang, C.H. Chang, Y.S. Chang, T.J.Anderson, “Effects of buffer layer processing on CIGS excess carrier lifetime: application of dual-beam optical modulation to process analysis [of solar cells]”, Proceedings of the 25th IEEE PVSC, Washington, DC, 1996, pp.821–824.
[7] D.Schmid, M.Ruckh, H.-W.Schock, “A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures”, Sol. Energy Mater. Sol.Cells 41/42 (1996) 281–294.
[8] K.A. Jones, J. Cryst. Growth 47 (1975) 235–244.
[9] J. Kessler, M. Ruckh, D. Hariskos, U. Ruhle, R. Menner. and H.W. Schock , “Interface engineering between CuInSe2 and ZnO”, Proc. 23rd IEEE Photovoltaic Specialists Conf., Louisville, USA (1993), p. 447.
[10] H.W. Schock, R. Noufi, “CIGS-based solar cells for the next millennium”, Prog. Photovolt. Res. Appl. 8 (2000) 151.
[11] D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2”, J. Appl. Phys., 73, 2902 (1993).
[12] V. Nadenau, D. Braunger, D. Hariskos, M. Kaiser, Ch. Koble, A. Oberacker, M. Ruckh, U. Ruhle, R. Schaffler, D. Schmid, T. Walter, S. Zweigart and H. W. Schock, “Solar cells based on CuInSe2 and related compounds: material and device properties and processing”, Prog. Photovoltaics, 3, 363 (1995).
[13] Y.-J. Chang, C. L. Munsee, G. S. Herman, J. F. Wager, P. Mugdur, D.-H. Lee, and C.-H. Chang, “Growth, characterization and application of CdS thin films deposited by chemical bath deposition”, Surf. Interface Anal, 37: 398–405, 2005.
[14] J. M. Doiia and J. Herrero, “Chemical Bath Deposition of CdS Thin Films: An Approach to the Chemical Mechanism Through Study of the Film Microstructure”, J. Electrochem. Soc., Vol. 144, No. 11, November 1997.
[15] Sho Shirakata, and Tokio Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells”, P hys. Status Solidi C 6, No. 5, 1059–1062 (2009).
[16] Adam Fraser Halverson, “The Role of Sulfur Alloying in Defects and Transitions in Copper Indium Gallium Diselenide Disulfide Thin Films”, December 2007.
[17] F. A. Abou-Elfotouh et al., “Characterization of the defect levels in copper indium diselenide”, Solar Cell, 30, 151 (1991).
[18] Noufi, R., et al., “Electronic properties versus composition of thin films of CuInSe2”, Appl. Phy. Lett., 45: p.668, 1984.
[19] Jenny Nelson, the Physics of Solar Cells, 2003.
[20] S. H. Wei, S. B. Zhang, and Alex Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Applied Physics Letter, 72, pp. 3199-3201, 1998.
[21] A. Catalano, Solar Energy Materials and Solar Cell, 41-42, 205 (1996).
[22] 增百亨, 工業材料雜誌, 285 (2010)
[23] Kannan Ramanathan, Miguel A. Contreras, Craig L. Perking, Sally Asher, Falah S. Hasoon, James Keane, David Young, Manuel Romero, Wyatt Metzger, Rommel Noufi, James Word and Anna Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt. 11, 225-230, 2003.
[24] Angus Rockett, “Performance-limitations in Cu(In,Ga)Se2-based heterojunction solar cells”, Conference Record of the 29th IEEE PVSC, 2002.
[25] Tokio Nakada, “Advanced Technologies for Thin-Film CIGS-Based Solar Cells”, 2010
[26] G.B. Turner, R.J. Schwartz and J.L. Gray, “Band discontinuity and bulk vs. interface recombination in CdS/CuInSe2 solar cells”, Proc. 20th IEEE Photovoltaic Specialists Conf., p. 1457 (IEEE, New York, 1988).
[27] 中田:“Cd-高效率CIGS薄膜太陽能電池“應用物理, Vol. 74, No.3(2005)333-337.
[28] Fumitaka Goto, Katsunori Shirai, Masaya Ichimura, “Defect reduction in electrochemically deposited CdS thin films by annealing in O2”, Solar Energy Materials and Solar Cells 50 (1998) 147-153.
[29] Su-Huai Wei and Alex Zunger, “Calculated natural band offsets of all II–VI and III–V semiconductors:Chemical trends and the role of cation d orbitals”, Appl. Phys. Lett. 72, 2011 (1998).
[30] R. Hunger, T. Schulmeyerl, M. Lebedev, A. Klein, W. Jaegermann, R. hied, M. Powalla, K. Sakurai and S. Niki, “REMOVAL OF THE SURFACE INVERSION OF CuInSe2 ABSORBERS BY NH3,aq. ETCHING”, 3rd World Conference on Pholovolroic Energy Convrmon, May 11-18. 2003 Osaka, Japan.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2012-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明