參考文獻 |
[1.1] 太陽輻射光譜圖,Available: http://rredc.nrel.gov/solar/spectra/。
[1.2] 楊德仁,《太陽能電池材料》,化學工業出版社,北京,2006。
[1.3] Gavin Conibeer, “Review:Third-generationphotovoltaics”, Materialstoday, 10 (11), pp. 745-747 (1987).
[1.4] Shockley and Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, Journal of Applied Physics, 32 (3), pp. 510 -519 (1961).
[1.5] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (Version 38) ”, Progress in Photovoltaics: Research and Applications, 19, pp. 565–572 (2011).
[1.6] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Progress in Photovoltaics: Research and Applications, 8, pp. 473–487 (2000).
[1.7] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
[1.8] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
[2.1] Martin A. Green, “The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution”, Progress in Photovoltaics: Research and Applications, 17, pp. 183–189 (2009).
[2.2] Ohl RS. Light sensitive electric device. US Patent 240252, filed 27 March 1941. Light-sensitive electric device including silicon. US Patent 2443542, filed 27 May 1941.
[2.3] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (Version 38) ”, Progress in Photovoltaics: Research and Applications, 19, pp. 565–572 (2011).
[2.4] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensionall numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
[2.5] Jianhua Zhao, Jan Schmidg, Aihua Wang, Guangchun Zhang, Bryce S. Richards and Martin A. Green, “Performance instability in n-type pert silicon solar cells”, 3rd World Cutference on Photovoltaic Energy Conversion, Osaka, Japan, May 11-18 ( 2003)
[2.6] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Progress in Photovoltaics: Research and Applications, 8, pp. 473–487 (2000).
[2.7] A. Ebong, P. Doshi, S. Narasimha,a A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999).
[2.8] James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology: Fundamentals, Practice and Modeling ”, Prentice Hall, July 24 (2000)
[2.9] Jianhua Zhao, Aihua Wang and Martin A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Effciency PERL Cells on FZ Substrates”, Progress in Photovoltaics: Research and Applications, 7, pp. 471-474 (1999)
[2.10] Jan Schmidt, Mark Kerr, “Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicon nitride”, Solar Energy Materials and Solar Cells 65, pp. 585-591 (2001)
[2.11] Jianhua Zhao, Aihua Wang, Pietro P. Altermatt, Stuart R. Wenham, Martin A. Green , “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”, Solar Energy Materials and Solar Cells 41/42 , pp. 87-99 (1996)
[2.12] Yevgeniya Larionova, Verena Mertens,Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3), 032105 (2010)
[2.13] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
[2.14] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
[3.1] 王宣文,《以濺法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響》,中央大學博士論文 (2012)
[3.2] D. K. Schroder, “Semiconductor Material and Device Characterization 2nd ed”, John Wiley and Sons (1998).
[3.3] H. Schlangenotto, H. Maeder, and W. Gerlach, “Temperature Dependance of the Radiative Recombination Coefficient in Silicon” Physica Status Solidi, 21a , pp. 357-367 (1974).
[3.4] A. Hangleiter and R. Hacker, “Enhancement of Band-to-Band Auger Recombination by Electron-Hole Correlations”, Physical Review Letters, 65 (2), pp. 215-218 (1990).
[3.5] D. B. Laks, G. F. Neumark, and S. T. Pantelides, “Accurate interband-Auger-recombination rates in silicon”, Physical Review B, 42 (8), pp. 5176-5185 (1990).
[3.6] P. T. Landsberg, “Trap-Auger recombination in silicon of low carrier densities”, Applied Physics Letters, 50 (12), pp. 745-747 (1987).
[3.7] J. Schmidt, M. J. Kerr, and P. P. Altermatt, “Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities”, Journal of Applied Physics, 88 (3), pp. 1494-1497 (2000).
[3.8] Mark J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, 91, pp. 2473-2481 (2002).
[3.9] Donald A. Neamen, “Semiconductor physics and devices basic principle, 3ed”, International Edition (2000).
[3.10] W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, 87, pp. 835-842 (1952)
[3.11] R. N. Hall, “Electron-Hole Recombination in Germanium”, Physical Review, 87, pp. 387 (1952).
[3.12] T. Sakurai, T. Sugani, “Theory of continuously distributed trap states at Si-SiO2 interfaces”, Journal of Applied Physics, 52 (4), pp. 2889-2896 (1981).
[3.13] V. K. Gueorguieva, Tz.E. Ivanov, C.A. Dimitriadis, L.I. Popova, S.K. Andreev, “Electron trapping probabilities in hydrogen ion implanted silicon dioxide films thermally grown on polycrystalline silicon”, Microelectronics Journal, 31, pp. 207–211 (2000).
[3.14] D. K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley and Sons (1990).
[3.15] 林聖偉,《矽晶太陽能電池表面鈍化層之量測與分析-介面缺陷濃度與載子捕捉截面積》,清華大學碩士論文 (2010)
[3.16] S.W. Glunz, S. Rein, W. Warta, J. Knobloch, W. Wettling, “Degradation of carrier lifetime in Cz siliconsolar cells” ,Solar Energy Materials and Solar Cells, 65, pp. 219-229 (2001).
[3.17] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社,台北市,2009。
[3.18] H.A. Macleod, “Thin Film Optical Filters, 2nd ed.”, McGraw Hill, New York (1986).
[4.1] K.R. Catchpole, A.W. Blakers, “Modeling the PERC structure for industrial quality silicon”, Solar Energy Materials & Solar Cells, 73, pp. 189–202 (2002)
[4.2] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
[5.1] 林詠祥,《金屬矽化物薄膜與矽/矽鍺界面反應之研究》,中央大學碩士論文 (2004)。
[5.2] Ruipeng Yang, Na Su, Paolo Bonfanti, Jiaxiang Nie, Jay Ning, and Tomi T. Li, “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 28 (1), pp. 56-61 (2010)
[7.1] Ronald A. Sinton and Andres Cuevas, “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data”, Applied Physics Letters, 69, pp. 2510-2512 (1996)
[7.2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
[7.3] A. Ebong, P. Doshi, S. Narasimha, A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999)
[7.4] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
[7.5] B.L. Sopori a, X. Deng , J. P. Benner, A. Rohatgi , P. Sana, S.K. Estreicher, Y.K. Park, M.A. Roberson , “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms”, Solar Energy Materials and Solar Cells, 41/42, pp. 159-169 (1996)
[8.1] Vinod Kumar Khanna, “Review Physical understanding and technological control of carrier lifetimes in semiconductor materials and devices: A critique of conceptual development, state of the art and applications”, Progress in Quantum Electronics, 29, pp. 59–163(2005).
[8.2] Armin G. Aberle, Gernot Heiser, and Martin A. Green, “Two-dimensional numerical optimization study of the rear contact geometry of high-efficiency silicon solar cells”, Journal of Applied Physics, 75 (10), pp. 5391-5405 (1994)
[8.3] B. Fischer, “Loss analysis of crystalline silicon solar cells using photoconductance and quantum efficiency measurements”,PhD thesis at university Konstanz, Konstanz, 2003.
[10.1] Ruipeng Yang, Na Su, Paolo Bonfanti, Jiaxiang Nie, Jay Ning, and Tomi T. Li, “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 28 (1), pp. 56-61 (2010).
[10.2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Applied Physics Letters, 96 (3) , 032105 (2010).
[10.3] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
[10.4] A. Ebong, P. Doshi, S. Narasimha,a A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, Journal of The Electrochemical Society, 146 (5), pp. 1921-1924 (1999).
[a1] http://web.eecs.umich.edu/~singh/semi.html
[b1] Jan Schmidt, Mark Kerr and Andrés Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”, Semiconductor Science and Technology, 16, pp. 164–170 (2001).
[b2] Yevgeniya Larionova, Verena Mertens, Nils-Peter Harder, and Rolf Brendel, “Surface passivation of n-type Czochralski silicon substrates by thermal-SiO2/plasma-enhanced chemical vapor deposition SiN stacks”, Appl. Phys. Lett., 96 (3) , 032105 (2010).
|