參考文獻 |
REFERENCES
[1]C. B. Frank, R. M. Rangayyan and G. D. Bell, Analysis of knee joint sound signals for non-invasive diagnosis of cartilage pathology, IEEE Eng. In Medicine and Biology Magazine, pp. 65-68, 1990.
[2]C.-J. Lu, T.-S. Lee, C.-C. Chiu “Financial time series forecasting using independent component analysis and support vector regression,” Decision Support Systems, Vol. 47, pp. 115-125, 2009.
[3]J. Karhunen. “Neural approaches to independent component analysis and source separation,” In Proc. 4th European Symp. Artificial Neural Networks, ESANN’96, Bruges, Belgium, pp.249-266, Apr. 1996.
[4]H. Sahlin, H. Broman, “Separation of real-world signals,” Signal Processing, Vol.64, No.2, pp.103-113, 1998.
[5]G. J. Erickson, J. T. Rychert and C. R. Smith. “Difficults applying recent blind source separation techniques to EEG and MEG,” Proceedings of the 17th International Workshop on Maxiumum Entropy and Bayesian Methods of Statistical Analysis, Boise, Idaho, pp.209-222, 1997.
[6]J. Karhumen, A. Hyvarinen, “Application of neural blind separation to signal and image processing,” In Proc ICASSP. Germany, Munich, pp.131-134, 1997.
[7]S. Makeig, T. P. Jung, A. J. Bell, “Blind separation of auditory event-related brain reponses into independent components,” In Proc Natl Acad Sci, Vol.94, pp.10979-10984, 1997.
[8]A. Benveniste, “Goursat M. Blind Equalizers,” IEEE Trans on Commun, Vol.32, No.8, pp.871-883, 1984.
[9]S. Makeig, M., Westerfield T-P. Jung, S. Enghoff, J. Townsend, E. Courchesne & T. J. Sejnowski “Dynamic brain sources of visual evoked responses,” Science Vol.295, pp.690-694, 2002.
[10]J. Herault & C. Jutten “Space or time adaptive signal processing by neural network models,” Neural Networks for Computing, AIP Conference Proceedings Vol.151, pp.207-211, 1986.
[11]P. Comon, “Independent component analysis-a new concept?” Signal Process., Vol.36, pp.287-314, 1994.
[12]A.J. Bell and T.J. Sejnowski, “An information maximisation approach to blind separation and blind deconvolution,” Neural Comput., Vol.7, No.6, pp.1129-1159, 1995.
[13]J.-F. Cardoso, B.H. Laheld, “Equivariant adaptive source separation,” IEEE Transactions on Signal Processing, Vol.44, No.12 pp.3017-3030, Dec 1996
[14]D. T. Pham and P. Garat, “Blind separation of mixture of independent sources through aquasi-maximum likelihood approach,” IEEE Transactions on Signal Processing, Vol.45, No.7, pp.1712-1725, Jul 1997.
[15]T.W. Lee, Independent Component Analysis: Theory and Applications, Kluwer Academic Publishers, Boston, 1998.
[16]A. Hyvärinen, “Sparse code shrinkage: Denoising of non-Gaussian data by maximum likelihood estimation,” Neurocomputing Vol.11, No.7, pp. 1739-1768, 1999.
[17]A. Hyvärinen and E. Oja, “Independent Component Analysis: Algorithms and Applications,” Neural Netw. Vol.13, No.4-5, pp.411-430, 2000.
[18]A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. Neural Netw. Vol.10, No.3, pp. 626-634, 1999b.
[19]A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput. Vol.9, No.7, pp. 1483-1492, 1997.
[20]A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis Wiley, New York, 2001.
[21]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, & H. H. Liu, “The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis,” Proc. Roy. Soc. Lond. A Vol. 454, pp. 903-995, 1998.
[22]Z. Wu, N. E Huang, Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis. 1(1) 1-41 (2009)
[23]N. E. Huang, Z. Wu, “A review on Hilbert-Huang transform: method and its applications to geophysical studies,” Reviews of Geophysics, Vol.46, No. RG2006, 2008.
[24]Z. Wu, N. E Huang, S. R. Long, C.-K. Peng, “On the trend, detrending, and the variability of nonlinear and non-stationary time series,” Proc. Natl. Acad. Sci. USA. Vol. 104, pp. 14889-14894, 2007.
[25]N. E. Huang, , M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, P. Gloersen, & K. L. Fan, “A confidence limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis,” Proc. Roy. Soc. Lond. A Vol. 459, pp.2317-2345, 2003.
[26]W. Huang, Z. Shen, N. E. Huang, & Y. C. Fung, “Engineering analysis of biological variables: An example of blood pressure over 1 day,” Proc. Natl. Acad. Sci. USA. Vol. 95, pp. 4816-4821, 1998.
[27]D. A.T. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A. Nisalak, K. Ungchusak & D. S. Burke, “Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand,” Nature Vol. 427, pp. 344-347, 2004.
[28]Z. Wu, N. E. Huang, S. R. Long, & C.-K. Peng, “On the trend, detrending, and the variability of nonlinear and non-stationary time series,” Proc. Natl. Acad. Sci. USA. Vol. 104, pp. 14889-14894, 2007.
[29]S. Krishnan, R. M. Rangayyan, G. D. Bell, and C. B. Frank, Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology, IEEE Trans. Biomed. Eng., vol. 47, no. 6, pp. 773-783, 2000.
[30]R.M. Rangayyan, S. Krishnan, G.D. Bell, C.B. Frank, K.O. Ladly, Parametric representation and screening of knee joint vibroarthrographic signals, IEEE Trans. Biomed. Eng. Vol. 44, pp.1068-1074, 1997.
[31]S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, Adaptive filtering, modelling, and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology, Med. Biol. Eng. Comput. Vol. 35, pp. 677684, 1997.
[32]K. Umapathy, S. Krishnan, Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals, IEEE Trans. Biomed. Eng. Vol. 53, pp. 517-523, 2006.
[33]C. Jiang, J. Lee and T. Yuan, Vibration arthrometry in patients with failed total knee replacement, IEEE Trans. Biomed. Eng,vol.47,no.2,pp.219-227,2000.
[34]M.L. Chu, I.A. Gradisar, M.R. Railey and G.F. Bowling, An electroacoustical technique for the detection of. knee joint noise, Medical Research Engineering, vol.12,no.1,pp.18-20,1976.
[35]R.A.B. Mollan, G.C. McCullagh and R.I. Wilson, A critical appraisal of auscultation of human joints, Clinical Orthopaedics And Related Research, vol.170,pp.231-237,1982.
[36]Y.T. Zhang, C.B. Frank, R.M. Rangayyan and G.D. Bell Mathematical modeling and spectral analysis of the patella-femoral pulse train produced during slow knee movement, IEEE Trans. Biomed. Eng, vol.39,no.9,pp.971-979,1992.
[37]Y.T. Zhang, K.O. Ladly, R.M. Rangayyan, C.B. Frank, G.D. Bell and Z.Q. Liu, Muscle contraction interference in acceleration vibroarthrography, Proc. The IEEE/EMBS 12th Annual International Conference,pp.2150-2151,1990.
[38]Y.T. Zhang, R.M. Rangayyan, C.B. Frank, G.D. Bell, Adaptive cancellation of muscle contraction interference from knee joint vibration signals, IEEE Trans. Biomed. Eng, vol.41,no.2,pp.181-191,1994.
[39]S. Krishnan, R.M. Rangayyan, G.D. Bell and C.B. Frank, Sonification of knee-joint vibration signals, in Proc. 22nd IEEE Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, pp.1995-1998,2000.
[40]Y. Shen, R.M. Rangayyan, G.D. Bell, C. B. Frank, Y.T. Zhang and K.O. Ladly, Localization of knee joint cartilage pathology by multichannel vibroarthrography, Med Eng Phys,vol.17,pp.583-594,1995.
[41]S.C. Huang, I.P. Wei, H.L. Chien, T.M. Wang, Y.H. Liu, H.L. Chen, T.W. Lu, J.G. Lin, Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis, Med Eng Phys,vol.30,pp.997-1003,2008.
[42]G. Spahn, H. Plettenberg, H. Nagel, E. Kahl, H.M. Klinger, T. Mückley, M. Günther, G.O. Hofmann and J.A. Mollenhauer, Evaluation of cartilage defects with near-infrared spectroscopy (NIR): An ex vivo study, Med Eng Phys,vol.30,pp.285-292,2008.
[43]P. Julkunen, R.K. Korhonen, W. Herzog and J.S. Jurvelin, Uncertainties in indentation testing of articular cartilage: A fibril-reinforced poroviscoelastic study,Med Eng Phys, vol.30,pp.506-515,2008.
[44]C. Provatidis, C. Vossou, E. Petropoulou, A. Balanika and G. Lyritis, A finite element analysis of a T12 vertebra in two consecutive examinations to evaluate the progress of osteoporosis, Med Eng Phys, In Press, Corrected Proof, Available online 30 January,2009.
[45]J.R. Steele, A. Basu and A. Job, A three-dimensional representation of an athletic female knee joint using magnetic resonance imaging, Med Eng Phys,vol.16,pp.363-369,1994.
[46]R.A.B. Mollan, W.G. Kemohan and P.H. Watters, Artefact encountered by the vibration detection system, J. Biomechanics,vol.16,no.3,pp.193-199,1983.
[47]C. Orizio, R. Perini, B. Diemont, M.M. Figini and A. Veicsteinas, Spectral analysis of muscular sound during isometric contraction of biceps, J Appl Physiol,vol.68,no.2,pp.508-512,1990.
[48]J. Maddox, “Cocktail party effect made tolerable,” Nature, Vol. 369, pp. 517, 1994.
[49]L. Molgedey, & H. G. Schuster, “Separation of a mixture of independent signals using time delayed correlations,” Phys. Rev. Lett. Vol. 72, pp. 3634-3637, 1994.
[50]E. Seifritz, F. Esposito, F. Hennel, H. Mustovic, J. G. Neuhoff, et al., “Spatiotemporal pattern of neural processing in the human auditory cortex,” Science, Vol. 297, pp. 1706-1708, 2002.
[51]M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, & R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid media using independent component analysis,” Appl. Phys. Lett. Vol. 87, No. 191112, 2005.
[52]M. Alrubaiee, M. Xu, S. K. Gayen, & R. R.Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. Vol. 89, No.133902, 2006.
[53]J. B. Tenenbaum, V.de Silva, & J. C. Langfoed, “A globl geometric framework for nonlinear dimensionality reduction,” Science Vol. 290, pp. 2319-2323, 2000.
[54]E. Mjolsness, & D. DeCoste, “Machine learning for science: state of the art and future prospects,” Science Vol. 293, pp. 2051-2055, 2001.
[55]M. S. Lewicki, “Efficient coding of natural sounds,” Nature Neuroscience Vol. 5, pp. 356-362, 2002.
[56]F. C. Meinecke, A. Ziehe, J. Kurths, & K.-R. , “Measuring phase synchronization of superimposed signals,” Phys. Rev. Lett. Vol. 94, No. 084102, 2005.
[57]Lauro, E. De, Martino, S. De & Falanga, M. Complexity of time series associated to dynamical systems inferred from independent component analysis. Phys. Rev. E 72, No. 046712 (2005).
[58]X. Huang, S. Y. Lee, E. Prebys, & R. Tomlin, “Application of independent component analysis to fermilab booster,” Physical Review Special Topics-Accelerators & Beams, Vol. 8, No.. 064001, 2005.
[59]M. Laubach, J. Wessberg, & M. A. L. Nicolelis, “Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task,” Nature, Vol. 405, pp. 567-571, 2000.
[60]H. Stögbauer, A. Kraskov, S. A. Astakhov, & P. Grassberger, “Least dependent component analysis based on mutual information,” Phys. Rev. E Vol. 70, No. 066123, 2004.
[61]N. M. Abramson, Information Theory and Coding. McGraw-Hill, New York, 1963.
[62]A. Feinstein, Foundations of Information Theory. McGraw-Hill, New York, 1958.
[63]A. Hyvärinen, Complexity pursuit: separating interesting components from time-series, Neural Computation,vol.13,no.4,pp.883-898,2001.
[64]N.E. Huang, Z. Shen, S.R. Long, M. Wu, H. Shih, N. Zheng, C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, vol.454,pp.903-995,1998.
[65]M. L. Chu, l. A. Gradisar, M. R. Railey and G. F. Bowling, An electroacoustical technique for the detection of knee joint noise, Medical Research Engineering, vol. 12, no. 1, pp. 18-20, 1976.
[66]T. Mu, A.K. Nandi and R.M. Rangayyan, Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm, Computers in Biology and Medicine, vol. 38, pp.1103-1111,2008
|