國立中央大學八十七學年度轉學生入學試題卷

化學系 二年級 科目: 普通化學 共一頁 第一頁

- Answer the following questions (20% 4 points each).
 (a) What is reversible process? What is Hess law?.
 - (b) The structure and usage of PVC.
 - (c) What is the steady-state approximation for determining the rate law?
 - (d) Write down the major structure of DNA and protein.
 - (e) What is the kinetic molecular theory of gases?
- 2. How does hard water affect the cleaning efficiency of soap? Write a balanced equation to illustrate your answer. (10%)
- 3. Give the structure of each following (10%, two points each) a. p-di-tert-butylbenzene.
 - b. 1-phenyl-2-butene.
 - c. 2,4-heptadiene.
 - d. cumene
 - e. 4-methyl-1-pentyne.
- 4. A chemist wishing to do an experiment requiring ⁴⁷Ca+² (half life = 4.5 days) needs 5 μg of the unclide. What mass of ⁴⁷CaO3 must be ordered if it takes 48 hours for delivery from the supplier? Assume that the atomic mass of ⁴⁷Ca is 47.0. (10%)
- What are the special properties of transition metal ions. (10%)
- A zinc-copper battery is constructed as follows at 25°C

$$Zn \left| Zn^{+2} (0.10 \text{ M}) \right| Cu^{+2} (2.50 \text{ M}) Cu$$

$$Zn^{+2} + 2e^{-} \longrightarrow Zn \quad \epsilon^{\circ} = -0.76V$$

$$Cu^{+2} + 2e^{-} \longrightarrow Cu \quad \epsilon^{\circ} = 0.34V$$

- a. Calculated the cell potential when this battery is first connected.
- b. Calculate the cell potential after 10.0 A of current has flowed for 10.0 hours. (Assume each half-cell contains 1.0 L of solution).
- c. Calculate the mass of each electrode after 10.0 hours.
- d. How long can this battery deliver a current of 10.0 A before it goes dead? (10%)
- A sample of a certain monoprotic weak acid was dissolved in water and titrated with 0.125 M NaOH, requiring 16.0 mL to reach the equivalence point. During the titration, the pH after adding 2.00 mL of NaOH was 6.912. Calculate K_a for the weak acid.(10%.)
- 8. Write Lewis structures and predict whether each of the folloeing is polar or nonpolar. (10%) a.COS b. CF₂O₂
 - c. H₂NNH₂ d. H₂CO
- What are the bonding modes used to describe the bonding in metals, ionic compounds and covalent compounds, (10%)

