
*請在試卷、答案卡內作答

- 1. (7 pts) A. What is the C_p (the molar heat capacity) of a gas which $C_v = 48$ J/(Kmole) at 298 K? (1 pt)
 - B. When 3.00 L of 4.00 M Ba(NO₃)₂ at 25.0 $^{\circ}$ C is mixed with 3.00 L of 4.00 M Na₂SO₄ at 25°C in a calorimeter, the temperature of the mixture increases to 45°C. The specific heat capacity of the solution is 4.18 J °C⁻¹ g⁻¹, calculate the enthalpy change per mole of BaSO₄ formed. (2 pts)

D. At what temperatures the following process will be spontaneous at 1 atm? (2 pts) A (
$$l$$
) —> A (g) Δ H° = 124.0 kJ/mol and Δ S° = 93.0 JK⁻¹mol⁻¹

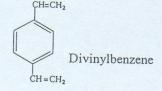
2. (8 pts) One mole of an ideal gas that is taken from state A ($P_A = 10$ atm, $V_A = 30$ L) to state B ($P_B = 10$ atm, $V_B = 60$ L, expansion under constant pressure). Calculate q, w, ΔE and ΔH for the following table. (the unit is kJ; please draw the following table in your answer paper)

And the last of th			
kJ	A → B		
W	2 pt		
q	2 pt		
ΔΕ	2 pt		
ΔΗ	2 pt		

- 3. (5 pts) The molar heat capacities for H_2O (s), H_2O (l) and H_2O (g) are 37.5, 75.3 and 36.4 J K^{-1} mol⁻¹, respectively, and the enthalpy of fusion and vaporization for water is 6.03 and 40.7 kJ/mol, respectively. Calculate the change in entropy that occurs when a sample of 144 g of -30 °C ice is placed in 216 g of 100 °C water. Calculate the final balance temperature (1 pts), and then show your calculation for the ΔS of this mixing. (4 pts)
 - (You don't need to give the final calculated data, only show the calculation process)
- 4. (6 pts) A. For the ammonia synthesis reaction, N_2+3 $H_2 \rightarrow 2$ NH_3 . if $\Delta G^\circ = -30$ kJ per mole. Show your ΔG calculation to predict the reaction direction in which the system will shift to reach equilibrium when the following reactants and products are mixed at 25 °C. (3 pts) $P_{NH3} = 9.0$ atm, $P_{N2} = 5.0$ atm, $P_{H2} = 6.0$ atm,
 - B. The value of K_p is 3 x 10⁻⁵ at 900 K for a reaction which with the value of $\Delta H^{\circ} = -50$ kJ, calculate the value of K_p at 600 K for this reaction. (3 pts)
 - (You don't need to give the final calaulated data, only show the calculation process)
- 5. (5 pts) A. Draw the best Lewis structures and predict their structure arrangements (geometry) of the following compounds. (3 pts, 1 pt each) a. CIF3 b. IF₅ c. TeF₄
 - B. The possible atom arrangement is given for POCl₃. Finish the corresponding Lewis structure and assign the formal charge to the central atom. (2 pts)

:背面有試題

6. (10 pts) The first atomic explosion was detonated in the desert north of Alamogordo, New Mexico, on July 16, 1945. What fraction of the strontium-90 ($t_{I/2} = 28$ yr, 10 months) originally produced by that explosion still remained as of August 16, 2017?


7. (5 pts) The space shuttle orbiter utilizes the oxidation of methyl hydrazine by dinitrogen tetroxide for propulsion: Using the bond energies in the following Table to calculate ΔH for this following reaction.

$$5 \text{ N}_2\text{O}_4(l) + \text{a N}_2\text{H}_3\text{CH}_3(l) \rightarrow \text{b H}_2\text{O} + \text{c N}_2 + \text{d CO}_2$$

(Note: unbalanced! Need to make sure that you got the best Lewis structures for each compound)

	Single Bonds					Multiple Bonds	
Н-Н	432	N-H	391	I—I	149	C=C	614
H-F	565	N-N	160	I—Cl	208	C≡C	839
H-Cl	427	N-F	272	I—Br	175	0=0	495
H—Br	363	N-Cl	200			C=0*	745
H—I	295	N—Br	243	S—H	347	C≡O	1072
		N-O	201	S—F	327	N=0	607
C-H	413	0-H	467	S—CI	253	N=N	418
C-C	347	0-0	146	S—Br	218	N≡N	941
C-N	305	O-F	190	s—s	266	C=N	615
C-0	358	O-CI	203		200	C≡N	891
C-F	485	0—1	234	Si—Si	340	C=IV	071
C-Cl	339			Si—H	393		
C—Br	276	F—F	154	Si—C	360		
C—I	240	F-CI	253	Si—O	452		
C—S	259	F—Br	237		132		
		Cl-Cl	239				
		Cl—Br	218				
		Br—Br	193				

- 8 (6 pts) A. For the following cell: Al + Zn²⁺ → Al³⁺ + Zn (Note: unbalanced!). Calculate it's cell potential at 25°C. (2 pts) (Al³⁺ + 3 e⁻ → Al, Standard reduction Potential = -1.66 V; Fe³⁺ + 3 e⁻ → Fe, Standard reduction Potential = -0.036 V; Zn²⁺ + 2 e⁻ → Zn, Standard reduction Potential = -0.76 V; Cr³⁺ + 3 e⁻ → Cr, Standard reduction Potential = -0.73 V)
 - B. For the following electrolytic cell: $Cu^{2+} + Zn \longrightarrow Zn^{2+} + Cu$ Determine the mass of the metal plated out when a current of 12 ampers is passed for 3 hour through this cell. (2 pts; Mw of Zn = 65.4 and Cu = 63.55) (2 pts)
 - C. Write the anode reaction for a H2-O2 fuel cell. (2 pts)
- 9. (10 pts) Polystyrene can be made more rigid by copolymerizing styrene with divinylbenzene. What purpose does the divinylbenzene serve? Why is the copolymer more rigid?

Styrene

注:背面有試題

科目 普通化學

類組別 A1 A5

10. (8 pts) A. The reaction between bromate ions and bromide ions in acidic aqueous solution is given by the following equation: $BrO_3(aq) + 5Br(aq) + 6H(aq) \longrightarrow 3Br_2(1) + 3H_2O(1)$

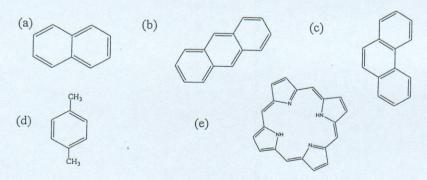
Using the results of the following four experiments to determine the orders for all three reactants (3 pts) and calculate the rate constant (k). (1 pt)

Exp.	BrO ₃ (M)	Br (M)	H ⁺ (M)	Measured Rate
1	0.2	0.4	0.2	1.6 x 10 ⁻⁵
2	0.4	0.2	0.4	6.4 x 10 ⁻⁵
3	0.4	0.4	0.2	3.2 x 10 ⁻⁵
4	0.2	0.4	0.4	6.4 x 10 ⁻⁵

B. Using the Steady-State Approximation for the reaction:

$$2 \text{ NO (g)} + \text{H2 (g)} \rightarrow \text{N2O (g)} + \text{H2O (g)},$$

Which may proceed via the following mechanism:


2NO
$$\frac{k_1}{k_{-1}}$$
 N₂O₂
N₂O₂ + H₂ $\frac{k_2}{k_{-1}}$ N₂O + H₂O

B1. Using the decomposition of H2 to derive the rate law. (3 pts)

B2. If the [H2] is pretty high, derive the new (simpler) rate law. (1 pt)

11. (10 pts, 2 pts each) How many bonds could each of the following chelates form with a metal ion? (a) acetylacetone (b) bipyridine (c) diethylenetriamine (d) porphine (e) 1,10-phenanthroline

12. (10 pts, 2 pts each) Giving the general names of the following compounds.

13. (10 pts, 5 pts each) Rank the following 0.10 M solutions in order of increasing pH.

(a) HI, HF, NaF, NaI

(b) C₆H₅NH₃NO₃, NaNO₃, NaOH, HOC₆H₅, HNO₃