參考文獻 |
[1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[4]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
[5]I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[6]魏寶文、趙紅衛著,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[7]D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[8]A. B. Cambel, M. Cambel, Plasma physics, Boston Heath, 1965.
[9]S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of plasma processing technology Fundamentals”, William Dickson, 1937.
[10]H. R. Kaufman,”Explanation of Bohm diffusion”, J. Vac. Sci. Technol, Vol B, Vol 8, pp. 107-109, 1990.
[11]Smith, L. Donald, Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[12]M. Quirk, J. Serda, Semiconductor Manufacturing Technology, Prentice Hall, 2001.
[13]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[14]J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp. 399-459, 1984.
[15]A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, “Solar Energy Materials & Solar Cells”, Vol 78, pp. 3-26, 2003.
[16]A. Matsuda, “Thin-film silicon growth process and solar cell application”, Japanese Journal of Applied Physics, Vol 43, pp. 7909-7920, 2004.
[17]Y. Ruohe, L. Kuixun, S. Wangzhou, L. Xuangying, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[18]M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J. Appl. Phys., Vol 62, pp. 2803-2811, 1987.
[19]Y. Kawai, K. Uchino, H. Muta, S. Kawai, Tobias Rowf, “Development of large diameter ECR plasma source”, Vacuum, Vol 84, pp. 1381-1384, 2010.
[20]T. B. Song, M. Z. Bin, W. Z. Hui, “Measurement of microwave ECR oxygen plasma parameter”, Journal of Wuhan Institute of Technology, 2009.
[21]M. Murata, S. Uchida, K. Kishimoto, M. Tanaka, A. Komori, Y. Kawai, “ECR plasma CVD in different magnetic field configurations”, J.J.A.P., Vol 31, pp. 1499-1502, 1992.
[22]Y. Ueda, Y. Inoue, S. Shinohara and Y. Kawai, “Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol 48, pp. 119-122, 1997.
[23]A. Triska, D. Dennison, H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 20-392, 1975.
[24]R.E. I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[25]J. Robertson, “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol 266-269, pp. 79-83, 2000.
[26]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[27]D. L. Staebler, C. R. Wronski, Appl. Phys. Lett., Vol 31, pp. 292-294, 1977.
[28]A. V. Shah, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003.
[29]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MucK, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97-108, 2000.
[30]A. Matsuda, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1-6, 1999.
[31]R. L. Kinder, M. J. Kushner, “Consequences of mode structure on plasma properties in electron cyclotron resonance sources”, Journal of Vacuum Science & Technology A, Vol 17, pp. 2421-2431, 1998.
[32]C. B. Shin, J. S. Hur, S. G. Oh, “A two-dimensional simulation of electron cyclotron resonance plasma andcomparison with experimental data”, Thin Solid Films, Vol 341, pp. 18-21, 1999.
[33]M. Liu, X. Hu, H. Wu, Q. Wu, G. Yu, Y. Pan, “Two-dimensional simulation of an electron cyclotron resonance plasma source with self-consistent power deposition”, Surface and Coatings Technology, Vol 131, pp. 29-33, 2000.
[34]H. Muta, N. Itagaki, Y. Kawai, “Numerical investigation of the production mechanism of a low-temperature electron cyclotron resonance plasma”, Vacuum, Vol 66, pp. 209-214, 2002.
[35]H. Muta, M. Koga, N. Itagaki, Y. Kawai, “Numerical investigation of a low-electron-temperature ECR plasma in Ar/N2 mixtures”, Surface and Coatings Technology, Vol 171, pp. 157-161, 2003.
[36]Y. Liu, Y. Wang, S. Cui, X. Wang, S. Zheng, X. Wang, “The effects of the operational parameters of the reactor on ECR plasma characteristics”, Vacuum, Vol 80, pp. 1367-1370, 2006.
[37]M. Koga, H. Muta, A. Yonesu, Y. Kawai, “Experimental and numerical investigation of ion temperature in an ECR plasma”, Vacuum, Vol 80, pp. 771-775, 2006.
[38]J. Perrin, O. Leroy, M. C. Bordage, “Cross-sections, rate constants and transport coefficients in silane plasma chemistry”, Contributions Plasma Physics, Vol 36, pp. 3-49, 1996.
[39]G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. G. J. H. M. van Sark, and J. Bezemer, “A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments”, J. Appl. Phys. , Vol 82, pp. 2060-2071, 1997.
[40]E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, E. S. Aydil, “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements”, J. Vac. Sci. Technol. A, Vol 16, pp. 544-563, 1998.
[41]M. J. Kushner, “A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon”, J. Appl. Phys. , Vol 63, pp. 2532-2551, 1988.
[42]J. L. Giuliani, V. A. Shamamian, R. E. Thomas, J. P. Apruzese, M. Mulbrandon, R. A. Rudder, R. C. Hendry, A. E. Robson, “Two-dimensional model of a large area, inductively coupled, rectangular plasma source for chemical vapor deposition”, IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol 27, pp. 1317-1328, 1999.
[43]K. D. Bleecker, D. Herrebout, A. Bogaerts, R. Gijbels, P. Descamps, “One-dimensional modelling of a coupled rf plasma in silane/helium, including small concentrations of O2 and N2”, J. Phys. D: Appl. Phys. , Vol 36, pp. 1826-1833, 2003.
[44]P. Haaland, “Dissociative attachment in silane”, J. Chem. Phys. , Vol 93, pp. 4066-4072, 1990.
[45]M. Wakaki, K. Kudo, T. Shibuya 編著,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳譯,化學工業出版社,2010年。
[46]W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1981.
[47]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, C. Dong, “Microwave plasma enhanced CVD of aluminum oxide films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
[48]E. M. Campbell, M. D. Rosen, D. W. Phillion, R. H. Price, K. Estabrook, B. F. Lasinski, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54-56, 1983.
[49]A. Francis, U. Czarnetzki, H. F. Döbele, N. Sadeghi, “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796-3798, 1997.
[50]潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[51]李永祥,「TE微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究」,國立中央大學,碩士論文,2011年。
[52]吳昭穎,「TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究」,國立中央大學,碩士論文,2011年。
|