![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:140 、訪客IP:18.191.138.59
姓名 洪維毅(Wei-Yi Hung) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 採用非對稱式面積分割型均光系統與LED光源之DLP投影機
(DLP projector with asymmetry light uniform system and LED light source)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本文提出在投影機的照明系統中採用陣列透鏡作為積分元件,並由發光二極體(Light Emitting Diode, LED)作為照明光源,利用將LED成像於陣列透鏡入光面的方式,使LED出光面與陣列透鏡入光面上的光形具有物像關係,利用陣列透鏡分割陣列透鏡入光面上的光形而形成多組新光源,最後利用無限共軛系統將多組光源重合於數位微型反射鏡元件(Digital Micromirror Device, DMD)照明區域,以此提升投影機照明系統之均勻度,稱為面積分割型均光系統。
為了提升陣列透鏡的效率,我們可以進一步導入非對稱式設計於LED與陣列透鏡間的成像系統,使成像系統於水平與垂直方向具有不同的放大倍率,稱為非對稱式面積分割型均光系統。本文採用非對稱式面積分割型均光系統搭配數位光源處理技術(Digital Light processingTM, DLP)進行投影機光路設計,並且對此設計進行模擬驗證。摘要(英) In this study, I introduce lens array as an integral device and LED as a light source in the illumination system of DLP projector. To build an imaging system which images the LED emitting surface to the input surface of lens array, so the light shape on the input surface of lens array must be the image of LED. Using lens array to split this light shape will bring numerous new light sources, then, we overlap them on the DMD plane of the projector by an infinite conjugate system. Finally, we complete an uniform illumination system of projector, it’s called light uniform system of area split.
Furthermore, in order to enhance the efficiency of lens array, we may switch the imaging system between LED and lens array into the asymmetrical type, which make the image system with different maginfication in horizontal and vertical directions and it’s called asymmetry light uniform system of area split. A design of DLP projector with asymmetry light uniform system is presented and proved by simulations in this study.關鍵字(中) ★ 非對稱
★ 視角分割
★ 面積分割
★ 均光系統
★ 陣列透鏡
★ 準直系統
★ 光展量
★ 光學不變量關鍵字(英) ★ asymmetry
★ angle split
★ area split
★ light uniform system
★ lens array
★ collimating system
★ étendue
★ optical invariant論文目次 摘 要..........i
Abstract..........ii
誌 謝..........iii
目 錄..........iv
圖 目 錄..........xii
表 目 錄..........xx
第一章 緒論..........1
1-1 前言..........1
1-2 研究動機..........3
1-3論文架構..........3
第二章 陣列透鏡均光系統運作機制..........5
2-1 陣列透鏡工作原理..........5
2-2 陣列透鏡設計..........5
2-2-1 陣列透鏡入光面與出光面互為焦平面..........5
2-2-2 陣列透鏡的收光能力..........7
2-2-3 陣列透鏡的出光角度分布..........9
2-2-4 陣列透鏡的收光能力以及出光角度分布關係..........10
2-2-5 陣列透鏡的收光位置以及出射平行光角度分布關係..........11
2-2-6 陣列透鏡的收光角度以及出光面光形分布關係..........11
2-2-7 陣列透鏡的收光角度以及出光面光形分布關係..........12
2-3 無限共軛系統..........13
2-4 視角分割型均光系統..........14
2-4-1 視角分割型均光系統的架構說明..........14
2-4-2 以準直系統搭配LED之陣列透鏡照明系統的設計..........15
2-4-3 視角分割型均光系統之陣列透鏡照明系統特性..........16
2-4-4 導致視角分割型均光系統效率衰減的因素I:LED發光面與陣列透鏡單格尺寸的長寬比不相等..........16
2-4-5 拉式不變量..........18
2-4-6 導致視角分割型均光系統效率衰減的因素II:準直系統的像方焦平面有效孔徑與準直系統有效焦距的比值與系統對LED收光角度的關係..........19
2-4-7 導致視角分割型均光系統效率衰減的因素III:陣列透鏡入光面與準直系統的像方焦平面不重合..........22
2-5 面積分割型均光系統..........28
2-5-1 面積分割型均光系統的架構說明..........28
2-5-2 以成像系統搭配LED之陣列透鏡照明系統的設計..........29
2-5-3 面積分割型均光系統之陣列透鏡照明系統特性..........30
2-5-4 導致面積分割型均光系統效率耗損的因素:陣列透鏡照明系統輸出之光束立體角型態與陣列透鏡可接收之立體角型態不相符..........31
2-5-5 面積分割型均光系統之陣列透鏡幾何效率分析..........31
2-6 非對稱式面積分割型均光系統..........42
2-6-1 非對稱式面積分割型均光系統的架構說明..........42
2-6-2 以非對稱式成像系統搭配LED之陣列透鏡照明系統的設計..........43
2-6-3 非對稱式面積分割型均光系統之陣列透鏡照明系統特性..........44
2-6-4 非對稱式面積分割型均光系統之陣列透鏡幾何效率分析..........44
2-7 視角分割型與非對稱式面積分割型均光系統的比較..........49
2-8視角分割型與非對稱式面積分割型均光系統的選擇..........50
第三章 DLP投影技術與系統光束立體角分析..........51
3-1 無限共軛系統與立體角的型態..........51
3-2 DMD構造與作動方式..........52
3-3 DLP技術運作機制..........53
3-4 DLP系統與TIR稜鏡組的搭配..........54
3-5 Flat state光束產生的原因..........55
3-6 Flat state光束與DLP投影機對比度..........56
3-7 以F-number=2.4的圓形光束立體角入射DMD時之DLP系統運作機制..........56
3-8 以水平方向F-number=2.4的矩形光束立體角入射DMD時之DLP系統運作機制..........57
3-9 入射DMD的立體角型態與étendue的關係..........58
3-9-1 圓形立體角之單位面積étendue計算..........59
3-9-2 矩形立體角之單位面積étendue計算..........59
3-9-3 單位面積étendue的衍伸意義..........60
3-9-4 圓形立體角與矩形立體角之étendue比較..........62
3-9-5 圓形立體角與矩形立體角在DLP系統之étendue比較..........62
3-9-6 圓形立體角與矩形立體角在étendue等值時在水平方向具有不同的F-number..........63
3-10 降低圓形立體角F-number的影響..........63
3-11 總結..........64
第四章 投影機光路設計..........66
4-1 DMD規格..........66
4-2 LED規格..........66
4-2-1 LED參數..........67
4-2-2 LED Φ-I curve..........67
4-2-3 LED 光譜..........67
4-2-4 LED 配光曲線..........68
4-3 初階計算..........68
4-3-1 照明系統的光學不變量..........68
4-3-3 決定系統的光學不變量..........71
4-3-4 決定陣列透鏡照明系統和陣列透鏡的參數..........71
4-3-5 定義Relay lens規格..........72
4-3-6 決定陣列透鏡設計值..........73
4-3-7 照明系統初階設計值總覽..........75
4-4 étendue計算..........75
4-4-1 LED的étendue計算..........75
4-4-2 陣列透鏡照明系統的étendue計算..........76
4-4-3 陣列透入光面的étendue計算..........76
4-4-4 陣列透出光面的étendue計算..........76
4-4-5 DMD照明區域的étendue計算..........76
4-4-6 DMD有效區域的étendue計算..........77
4-4-7 投影鏡頭的étendue計算..........77
4-4-8 光學系統étendue值總覽和全系統幾何效率分析..........80
4-5 TIR稜鏡組角度計算..........81
4-5-1 TIR稜鏡組結構與工作方式說明..........81
4-5-2 TIR稜鏡組α角計算..........82
4-5-3 TIR稜鏡組β角計算..........83
4-5-4 TIR稜鏡組設計值計算..........84
4-6 陣列透鏡照明系統設計..........84
4-7 照明系統設計..........86
4-7-1 Relay lens設計..........86
4-7-2導入TIR稜鏡組進行優化..........86
4-7-3 二度優化Relay lens..........88
4-8 投影鏡頭設計..........89
4-8-1 預估系統光通量輸出..........89
4-8-2 計算投影畫面尺寸..........90
4-8-3 等效焦距計算..........91
4-8-4 Line pair 數值計算..........91
4-8-5 計算Offset值..........92
4-8-6 定義鏡頭規格..........93
4-8-7 鏡頭設計結果..........94
4-8-8 視訊畸變..........99
4-8-9 公差分析..........101
第五章 投影機光學系統模擬分析及色彩計算..........105
5-1 整機Layout..........105
5-2 模擬值誤差分析..........107
5-2-1 於理想系統模型取得照度計算值..........107
5-2-3 比較分析計算值與模擬值..........108
5-2-5 求最大誤差關係式..........110
5-2-6 模擬誤差值..........111
5-3 模擬結果..........112
5-3-1 陣列透鏡照明..........112
5-3-2 均勻度規範..........114
5-3-3 DMD照明..........114
5-3-4 投影畫面..........116
5-4 系統效率分析..........117
5-4-1 DMD效率..........117
5-4-2 系統運作機制以及鏡頭Cat eye設定..........117
5-4-3 系統效率分析..........119
5-5 色彩系統..........120
5-5-1 合光系統說明..........120
5-5-2 CIE 1931標準色度觀察者與色彩飽和度的推算..........121
5-5-3 色彩分光鏡對光源的影響..........123
5-5-4 色彩調整..........126
5-6 設計結果..........127
第六章 結論與未來展望..........128
6-1 結論..........128
6-2 未來展望..........129
參 考 文 獻..........131參考文獻 [1] Edward H. Stupp, Matthew S. Brennesholtz, “Projection Display,” (John Wiley & Sons Ltd, England, 1999) 2nd ed..
[2] F. Yamasaki, M. Deguchi, T. Kakuda, T. Shiaki and T. Nakashima, " HIGH EFFICIENCY OPTICAL SYSTEM DESIGN FOR A LIQUID CRYSTAL PROJECTOR," IEEE Trans. Consum. Electron. 46, 851-856 (2000).
[3] C. M. Chang and H. P. D. Shieh, "Design of illumination and projection optics for projectors with single digital micromirror devices," Appl. Opt. 39, 3202-3208 (2000).
[4] A. J. W. Whang, P. C. Li, Y. Y. Chen, and S. L. Hsieh, " Guiding Light From LED Array Via Tapered Light Pipe for Illumination Systems Design," J. Disp. Technol. 5, 104-108 (2009).
[5] TEXAS INSTRUMENT, "DLP Technology," http://www.ti.com/analog/docs/memsmidlevel.tsp?sectionId=622&tabId=2442. (2012/12/13)
[6] E. Chen and F. Yu, " Design of an elliptic spot illumination system in LED-based color filter–liquid-crystal-on-silicon pico projectors for mobile embedded projection," Appl. Opt. 51, 3162-3170 (2012).
[7] J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, " Homogenized LED-illumination using microlens arrays for a pocket-sized projector," Opt. EXPRESS 15, 10483-10491 (2007).
[8] X. Zhao, Z. L. Fang, J. C. Cui, X. Zhang, and G. G. Mu, " Illumination system using LED sources for pocket-size projectors," Appl. Opt. 46, 522-526 (2007).
[9] M. H. Keuper, G. Harbers, and S. Paolini, " RGB LED illuminator for pocket-sized projectors," J. Soc. Inf. Disp. 35, 943-945 (2004).
[10] OSRAM, “ LE A S2W / LE T S2W / LE B S2W,” http://ledlight.osram-os.com/2011/10/ostar-smt-le-rtduw-s2w/. (2012/12/13)
[11] S. C. Shin, Y. Jung, T. J. Ahn, S. S. Jeong, S. G. Lee, and K. Y. Choi, " The Compact Systems Design Based on DMD and the Straight Line 2-Channel LED for a Mobile Embedded Pico Projector," J. Disp. Technol. 8, 219-224 (2012).
[12] R. H. Horng, J. S. Hong, Y. L. Tsai, D. S. Wuu, C. M. Chen, and C. J. Chen, " Optimized Thermal Management From a Chip to a Heat Sink for High-Power GaN-Based Light-Emitting Diodes," IEEE Trans. Electron Devices 57, 2203-2207 (2010).
[13] X. W. Zhang, J. W. Xu, H. R. Xu, H. P. Lin, J. Li , X. Y. Jiang, Z. L. Zhang, " Improving electron injection and microcavity effect for constructing highly efficient inverted top-emitting organic light-emitting diode," Opt. Laser Technol. 45, 181-184 (2012).
[14] X. y. Lu, T. C. Hua, M. J. Liu, Y. X. Cheng, " Thermal analysis of loop heat pipe used for high-power LED," Thermochim. Acta 493, 25-29 (2009).
[15] M. Y. Tsai , C. H. Chen, C. S. Kang, " Thermal measurements and analyses of low-cost high-power LED packages and their modules," Microelectron. Reliab. 52, 845-854 (2012).
[16] H. H. Cheng, D. S. Huang, M. T. Lin, " Heat dissipation design and analysis of high power LED array using the finite element method," Microelectron. Reliab. 52, 905-911 (2012).
[17] X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, " LED-Based Projection Systems," J. Disp. Technol. 3, 295-303 (2007).
[18] F. Fournier and J. Rolland, " Design Methodology for High Brightness Projectors," J. Disp. Technol. 4, 86-91 (2008).
[19] J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, " High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system," Appl. Opt. 47, 3406-3414 (2008).指導教授 孫文信(Wen-Shing Sun) 審核日期 2013-1-28 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare