博碩士論文 952411003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.133.148.130
姓名 郭書麟(Shu-Lin Guo)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
(Application of an Innovative Immobilization Strategy to the Development and Validation of a New Multiplexed Antibody Microarrays Platform)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells
★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討
★ 運用時間序列微陣列資料來預測調控基因★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型
★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型
★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了打造因特殊研究需求所構建的,而進行相關蛋白質固著晶片表面效率之改進策略,則一直是系統生物學家非常興趣的一個課題。相較於核酸分子,蛋白質本身的功能是和它特有的三度空間結構緊密結合,當離開原本合宜的化學及物理環境,蛋白質就容易造成去活化質變的結果,自然地在製造抗體微陣列晶片就是個關鍵。因此,抗體微陣列晶片表面的選擇,必須因應不同抗體的特性而採取不同的考量;相對地,對於核酸微陣列製備過程不是問題。想進一步提昇微陣列晶片系統表現,其重點在於如何將抗體固著於晶片表面而不影響其構形及方向性。因為一個有效的固著方法必須適用於各種不同的抗體分子,當抗體固著於晶片表面時,可以不減損其活性,又可以保留與抗原結合之能力,乃是最佳選擇。這樣的解決方案於實際運用上,不僅應有再現性高,且有助於高通量自動化之數據產出,完整保留抗體結合能力及有效降低非特異性之鍵結等優點。
在本研究中,我們提出了一個創新的抗體固著晶片的方案,利用蛋白質G鍵結於醛基晶片上,完全達成上述要求。為了同時顧及抗體活性及提昇微陣列反應,蛋白質G可以於攝氏4度下,相較於傳統方法,於較短時間內有效連結抗體及晶片表面,同時維持抗體排列方向一致性。我們以六種疼痛訊息傳遞分子為例進行抗體微陣列構建。相較於舊有抗體固著方式,蛋白質G的介入讓抗體固定於晶片時間,由原需隔夜作用有效縮短至只有二小時,大大提高實驗效率。同時,這個改良也讓抗體固著能力提昇,單位偵測密度增加,有利於高通量實驗之進行。所以,這個新的抗體微陣列平台,可以有效地觀察疼痛訊息傳遞分子於樣本中濃度變化。另外,本研究也提供實際實驗觀察,證實了蛋白質G能讓抗體微陣列分析敏感度改善、有效降低最低可偵測濃度及大幅提昇訊噪比。同時我們也進行了品管測試:首先,六種疼痛訊息傳遞分子平均有效降低最低可偵測濃度可以敏感至100 pg/ml,這樣的敏感度已優於許多同類型的檢驗方式;而在特異性方面,晶片的交叉反應測試上,相較於普通晶片,明顯改善其表現平均達50倍。
總結以上結果,本研究以蛋白質G鍵結於醛基晶片表面的解決方案的確是高敏感性的檢驗方式,而且能有效縮短製備時間的創新作法。事實上,我們確實克服了幾項在發展抗體微陣列之可能會遭遇的困難,包括:以較短的抗體固著制備時間減少抗體變性的可能性;不需對抗體進行事前的化學修飾,可以完全保留對抗原的結合度及有效提升晶片的敏感度;更穩定的晶片固著能力可以提供晶片的再現性;以及一致性的抗體排列將有助於改善信噪比及減少非特異性結合的可能性。我們在小規模的實驗中證實了此新方法的可行性,這也為大規模應用奠定基礎。也相信以我們研發的平台上可以進一步發展出高敏感度的篩檢工具,尤其是可以有效地運用在研究生物標記、新藥標的開發,進而在研究上發展開拓其應有創新的價值。
摘要(英) The construction of an antibody microarray for one specific target, with improved methods of protein immobilization on solid matrix, is always of great interest to the field of systems biology. Unlike DNA or RNA, proteins have unique 3D structures that are critical to their functions, but have the tendency of denaturing quickly after leaving their natural chemical and physical environments, a tendency that poses a serious challenge to making antibody microarrays viable. Consequently, the selection of suitable surface chemistry is requirement unique to antibody microarrays; it is not needed for, say, DNA microarrays. For enhancing the performance, how antibodies are captured and fixed on the slide surface plays an increasingly vital role in maintaining the conformation and orientation of the antibody. For an attachment method to be effective, it is necessary that it is applicable to a wide range of antibodies and, when the antibodies are bound to the surface of solid substrates, their activities and binding capacity are preserved. Immobilization methods using efficient surface chemistry should be reliable, applicable to antibodies with universal properties, amenable to high-throughput automation, and it should fully preserve the binding capabilities of the antibodies – through maintenance of the correct orientation of antibody epitopes – and minimize nonspecific binding.
We present a novel immobilization method to capture antibodies that uses Protein G coating on aldehyde-derivatized slide. To maintain the antibody activity and enhance performance of array-based immunoassays, protein G was used to allow a shorter duration of immunoglobulin G immobilization at 4 °C, with the antibody placed in the appropriate orientation with uniform face-out epitopes. The multiplexed detection of six pain-related message molecules (PRMMs) was used as examples for the development of array-based immunoassays: substance P, calcitonin gene-related peptide, nerve growth factor, brain-derived neurotrophic factor, tumor necrosis factor-α, and β-endorphin. Compared to non-protein G immunoassays, protein G shortened the antibody immobilization time at 4 °C from overnight to 2 hours. It provides effective high-density protein immobilization without activity loss or incorrect orientation of the capture antibody. This new platform of antibody microarray is a useful tool for analysis of PRMMs as demonstrated in our experimental results with fluorescence immunoassay methods. A mechanism of protein binding to solid surface coated with Protein G that results in improved detection sensitivity, excellently low limit of detection (LOD), and remarkably high signal-to-noise (SN) ratio are provided. In our array validation, the LOD of six PRMMs were sensitive to average 100 pg/ml,
iv
better than other proteomic tools. Our method exhibited excellent specificity, the cross-reactivity was observed to have contrast 50-times seen typically in conventional array surface.
In conclusion, our experimental results suggested that Protein G, a novel linker molecule, was an efficient antibody immobilizer, and that Protein G-coated method was a highly sensitive antibody microarray. Key obstacles overcame and achievement obtained in this work include: prevention of antibody denaturation by shortened immobilization time; full preservation of antibody’s binding capacity and effective increase of array sensitivity by absence of extraneous modification tag on antibody; good reproducibility assured by more stable fixation of antibody on surface; increase of signal-to-noise ratio and reduction of non-specific binding by uniform arrangement of capture antibody. We demonstrated the applicability for a small-scale project, and believe it forms the foundation large-scale scale-up. We believe our method can be a useful tool for the development of a high detection sensitivity, antigen-antibody interaction, microarray-based screening system for new drug target discovery and biomarker assays.
關鍵字(中) ★ 疼痛相關訊息分子
★ 陣列式免疫分析法
★ 蛋白質G
★ 定量分析
★ 多孔位
★ 多重分析
關鍵字(英) ★ pain-related message molecule
★ array-based immunoassay
★ protein G
★ quantitation
★ multi-well
★ multiplexed
論文目次 中文摘要 .................................. i
ABSTRACT .................................. iii
ACKNOWLEGMENTS ............................ v
TABLE OF CONTENTS ......................... vii
List of Figures ........................... ix
List of Tables ............................ xi
ABBREVIATIONS ............................. xiii
INTRODUCTION AND BACKGROUND ............................ 1
1. Antibody Microarray in Proteomics ................... 1
1.1. Un-target Methods ................................. 3
1.2. Target Methods .................................... 4
2. Mutiplexed Array-based Technology ................... 6
2.1. From DNA Arrays to Protein Arrays ................. 7
2.2. Protein Microarray Type ........................... 10
2.2.1. Functional Microarray ........................... 11
2.2.2. Analytical Microarray ........................... 11
3. Fabrication of Antibody Microarrays ................. 12
3.1. Selection of Target Antibody ...................... 13
3.2. Surface Chemistry ................................. 15
3.2.1. 2D surface ...................................... 18
3.2.2. 3D surface ...................................... 19
3.3. Immobilization Strategy ........................... 20
3.3.1. Physical absorption ............................. 22
3.3.2. Covalent binding................................. 23
3.3.3. Affinity tag .................................... 24
3.4. Orientation ....................................... 26
3.5. Immobilization of Antibody ........................ 28
3.6. Validation of Analytical Performance .............. 29
4. Applications of Antibody Microarray ................. 32
4.1. Tool for Biomarker Research ....................... 33
4.2. Tool for Drug Development ......................... 35
AIM .................................................... 39
EXPERIMENTAL THEORY .................................... 41
1. Reagents............................................. 41
2. Instruments ......................................... 41
3. Methods ............................................. 42
3.1. Microarray Surface Comparison ..................... 42
3.3.1. Antibody microarray printing .................... 42
3.3.2. Fluorescent sample labeling ..................... 42
3.3.3. Chip assays for specific binding ................ 43
3.2. Protein G-mediated Antibody Microarrays ........... 44
3.2.1. Protein G-facilitated IgG assay at 4°C .......... 44
3.2.2. IgG array without Protein G ..................... 45
3.2.3. Sample labeling ................................. 45
3.2.4. Immunoassays for cross-reactivity tests ......... 46
3.2.5. Immunoassays for dose-responses ................. 46
3.2.6. Imaging and data analysis ....................... 46
RESULTS AND DISCUSSION ................................. 47
1. Microarray Surface Comparison ....................... 47
2. Protein G-mediated Antibody Microarrays ............. 52
FUTURE CHALLENGES ...................................... 61
CONCLUSIONS ............................................ 63
REFERENCE .............................................. 65
APPENDIX ............................................... 81
參考文獻 [1] S.F. Zhou, Y.M. Di, E. Chan et al, "Clinical pharmacogenetics and potential application in personalized medicine", Current drug metabolism, Vol 9(8), pp. 738-784, 2008
[2] M.J. Duffy, J. Crown, "A personalized approach to cancer treatment: how biomarkers can help", Clinical chemistry, Vol 54(11), pp. 1770-1779, 2008
[3] S. Hanash, "Disease proteomics", Nature, Vol 422(6928), pp. 226-232, 2003
[4] B.B. Haab, M.J. Dunham, P.O. Brown, "Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions", Genome biology, Vol 2(2), pp. RESEARCH0004, 2001
[5] G. MacBeath, S.L. Schreiber, "Printing proteins as microarrays for high-throughput function determination", Science, Vol 289(5485), pp. 1760-1763, 2000
[6] H. Zhu, M. Bilgin, R. Bangham et al: Global analysis of protein activities using proteome chips. In: Science. vol. 293, 2001/07/28 edn; 2001: 2101-2105.
[7] B.B. Haab, "Methods and applications of antibody microarrays in cancer research", Proteomics, Vol 3(11), pp. 2116-2122, 2003
[8] L. Perlee, J. Christiansen, R. Dondero et al, "Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics", Proteome science, Vol 2(1), pp. 9, 2004
[9] C. Wingren, C.A. Borrebaeck, "High-throughput proteomics using antibody microarrays", Expert review of proteomics, Vol 1(3), pp. 355-364, 2004
[10] P. Angenendt, "Progress in protein and antibody microarray technology", Drug discovery today, Vol 10(7), pp. 503-511, 2005
[11] J.E. Eckel-Passow, A. Hoering, T.M. Therneau et al, "Experimental design and analysis of antibody microarrays: applying methods from cDNA arrays", Cancer research, Vol 65(8), pp. 2985-2989, 2005
[12] S.F. Kingsmore, "Multiplexed protein measurement: technologies and applications of protein and antibody arrays", Nature reviews Drug discovery, Vol 5(4), pp. 310-320, 2006
[13] U. Korf: Protein microarrays : methods and protocols. New York: Humana Press; 2011.
[14] E. Engvall, P. Perlmann, "Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G", Immunochemistry, Vol 8(9), pp. 871-874, 1971
[15] G.E. Rice, H.M. Georgiou, N. Ahmed et al, "Translational proteomics: developing a predictive capacity -- a review", Placenta, Vol 27 Suppl A pp. S76-86, 2006
[16] G. Rigaut, A. Shevchenko, B. Rutz et al, "A generic protein purification method for protein complex characterization and proteome exploration", Nature biotechnology, Vol 17(10), pp. 1030-1032, 1999
[17] M.P. Washburn, D. Wolters, J.R. Yates, 3rd, "Large-scale analysis of the yeast proteome by multidimensional protein identification technology", Nature biotechnology, Vol 19(3), pp. 242-247, 2001
[18] J. Listgarten, A. Emili, "Practical proteomic biomarker discovery: taking a step back to leap forward", Drug discovery today, Vol 10(23-24), pp. 1697-1702, 2005
[19] M.R. Wilkins, R.D. Appel, J.E. Van Eyk et al, "Guidelines for the next 10 years of proteomics", Proteomics, Vol 6(1), pp. 4-8, 2006
[20] Y. Li, R.T. McIver, Jr., R.L. Hunter, "High-accuracy molecular mass determination for peptides and proteins by Fourier transform mass spectrometry", Analytical chemistry, Vol 66(13), pp. 2077-2083, 1994
[21] E. Kopf, D. Zharhary, "Antibody arrays--an emerging tool in cancer proteomics", The international journal of biochemistry & cell biology, Vol 39(7-8), pp. 1305-1317, 2007
[22] M. Sanchez-Carbayo, "Antibody arrays: technical considerations and clinical applications in cancer", Clinical chemistry, Vol 52(9), pp. 1651-1659, 2006
[23] D.A. Hall, J. Ptacek, M. Snyder, "Protein microarray technology", Mechanisms of ageing and development, Vol 128(1), pp. 161-167, 2007
[24] M. Schena, D. Shalon, R.W. Davis et al, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray", Science, Vol 270(5235), pp. 467-470, 1995
[25] A.C. Gavin, M. Bosche, R. Krause et al, "Functional organization of the yeast proteome by systematic analysis of protein complexes", Nature, Vol 415(6868), pp. 141-147, 2002
[26] Y. Ho, A. Gruhler, A. Heilbut et al, "Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry", Nature, Vol 415(6868), pp. 180-183, 2002
[27] N.J. Krogan, G. Cagney, H. Yu et al, "Global landscape of protein complexes in the yeast Saccharomyces cerevisiae", Nature, Vol 440(7084), pp. 637-643, 2006
[28] S. Ghaemmaghami, W.K. Huh, K. Bower et al, "Global analysis of protein expression in yeast", Nature, Vol 425(6959), pp. 737-741, 2003
[29] W.K. Huh, J.V. Falvo, L.C. Gerke et al, "Global analysis of protein localization in budding yeast", Nature, Vol 425(6959), pp. 686-691, 2003
[30] H. Zhu, J.F. Klemic, S. Chang et al, "Analysis of yeast protein kinases using protein chips", Nature genetics, Vol 26(3), pp. 283-289, 2000
[31] M.F. Templin, D. Stoll, M. Schrenk et al, "Protein microarray technology", Drug discovery today, Vol 7(15), pp. 815-822, 2002
[32] J.L. DeRisi, V.R. Iyer, P.O. Brown, "Exploring the metabolic and genetic control of gene expression on a genomic scale", Science, Vol 278(5338), pp. 680-686, 1997
[33] N. Sevenet, O. Cussenot, "DNA microarrays in clinical practice: past, present, and future", Clinical and experimental medicine, Vol 3(1), pp. 1-3, 2003
[34] H. Zhu, M. Snyder, "Protein chip technology", Current opinion in chemical biology, Vol 7(1), pp. 55-63, 2003
[35] L. Prix, P. Uciechowski, B. Bockmann et al, "Diagnostic biochip array for fast and sensitive detection of K-ras mutations in stool", Clinical chemistry, Vol 48(3), pp. 428-435, 2002
[36] Y. Lin, R. Huang, X. Cao et al, "Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate", Clinical chemistry and laboratory medicine : CCLM / FESCC, Vol 41(2), pp. 139-145, 2003
[37] B. Jahn-Schmid, C. Harwanegg, R. Hiller et al, "Allergen microarray: comparison of microarray using recombinant allergens with conventional diagnostic methods to detect allergen-specific serum immunoglobulin E", Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, Vol 33(10), pp. 1443-1449, 2003
[38] E.F. Petricoin, L.A. Liotta, "Clinical applications of proteomics", The Journal of nutrition, Vol 133(7 Suppl), pp. 2476S-2484S, 2003
[39] W.M. Gao, R. Kuick, R.P. Orchekowski et al, "Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis", BMC cancer, Vol 5 pp. 110, 2005
[40] R. Orchekowski, D. Hamelinck, L. Li et al, "Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer", Cancer research, Vol 65(23), pp. 11193-11202, 2005
[41] P. Ellmark, S. Ghatnekar-Nilsson, A. Meister et al, "Attovial-based antibody nanoarrays", Proteomics, Vol 9(24), pp. 5406-5413, 2009
[42] C. Wingren, J. Ingvarsson, L. Dexlin et al, "Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support", Proteomics, Vol 7(17), pp. 3055-3065, 2007
[43] C. Wingren, J. Ingvarsson, M. Lindstedt et al, "Recombinant antibody microarrays--a viable option?", Nature biotechnology, Vol 21(3), pp. 223, 2003
[44] M.S. Alhamdani, C. Schroder, J.D. Hoheisel, "Analysis conditions for proteomic profiling of mammalian tissue and cell extracts with antibody microarrays", Proteomics, Vol 10(17), pp. 3203-3207, 2010
[45] W. Kusnezow, V. Banzon, C. Schroder et al, "Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies", Proteomics, Vol 7(11), pp. 1786-1799, 2007
[46] C. Schroder, A. Jacob, S. Tonack et al, "Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies", Molecular & cellular proteomics : MCP, Vol 9(6), pp. 1271-1280, 2010
[47] J.M. Schwenk, U. Igel, M. Neiman et al, "Toward next generation plasma profiling via heat-induced epitope retrieval and array-based assays", Molecular & cellular proteomics : MCP, Vol 9(11), pp. 2497-2507, 2010
[48] D. Zichi, B. Eaton, B. Singer et al, "Proteomics and diagnostics: Let’s Get Specific, again", Current opinion in chemical biology, Vol 12(1), pp. 78-85, 2008
[49] J. Sobek, K. Bartscherer, A. Jacob et al, "Microarray technology as a universal tool for high-throughput analysis of biological systems", Combinatorial chemistry & high throughput screening, Vol 9(5), pp. 365-380, 2006
[50] M. Hartmann, J. Roeraade, D. Stoll et al, "Protein microarrays for diagnostic assays", Analytical and bioanalytical chemistry, Vol 393(5), pp. 1407-1416, 2009
[51] R. Falk, M. Ramstrom, S. Stahl et al, "Approaches for systematic proteome exploration", Biomolecular engineering, Vol 24(2), pp. 155-168, 2007
[52] S. Hu, Z. Xie, J. Qian et al, "Functional protein microarray technology", Wiley interdisciplinary reviews Systems biology and medicine, Vol 3(3), pp. 255-268, 2011
[53] S. Hober, M. Uhlen, "Human protein atlas and the use of microarray technologies", Current opinion in biotechnology, Vol 19(1), pp. 30-35, 2008
[54] W. Kusnezow, A. Jacob, A. Walijew et al, "Antibody microarrays: an evaluation of production parameters", Proteomics, Vol 3(3), pp. 254-264, 2003
[55] P. Pavlickova, E.M. Schneider, H. Hug, "Advances in recombinant antibody microarrays", Clinica chimica acta; international journal of clinical chemistry, Vol 343(1-2), pp. 17-35, 2004
[56] L. Charboneau, H. Tory, T. Chen et al, "Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays", Briefings in functional genomics & proteomics, Vol 1(3), pp. 305-315, 2002
[57] R. Wiese, "Analysis of several fluorescent detector molecules for protein microarray use", Luminescence : the journal of biological and chemical luminescence, Vol 18(1), pp. 25-30, 2003
[58] L.A. Liotta, V. Espina, A.I. Mehta et al, "Protein microarrays: meeting analytical challenges for clinical applications", Cancer cell, Vol 3(4), pp. 317-325, 2003
[59] C. Wingren, C.A. Borrebaeck, "Antibody microarray analysis of directly labelled complex proteomes", Current opinion in biotechnology, Vol 19(1), pp. 55-61, 2008
[60] B.B. Haab, "Applications of antibody array platforms", Current opinion in biotechnology, Vol 17(4), pp. 415-421, 2006
[61] C. Wingren, C.A. Borrebaeck, "Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays", Drug discovery today, Vol 12(19-20), pp. 813-819, 2007
[62] S.F. Kingsmore, D.D. Patel, "Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification", Current opinion in biotechnology, Vol 14(1), pp. 74-81, 2003
[63] C. Wingren, C. Steinhauer, J. Ingvarsson et al, "Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes", Proteomics, Vol 5(5), pp. 1281-1291, 2005
[64] M. Pawlak, E. Schick, M.A. Bopp et al, "Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis", Proteomics, Vol 2(4), pp. 383-393, 2002
[65] C. Steinhauer, C. Wingren, A.C. Hager et al, "Single framework recombinant antibody fragments designed for protein chip applications", BioTechniques, Vol Suppl pp. 38-45, 2002
[66] E. Soderlind, L. Strandberg, P. Jirholt et al, "Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries", Nature biotechnology, Vol 18(8), pp. 852-856, 2000
[67] P. Angenendt, J. Glokler, "Evaluation of antibodies and microarray coatings as a prerequisite for the generation of optimized antibody microarrays", Methods in molecular biology, Vol 264 pp. 123-134, 2004
[68] G. MacBeath, "Protein microarrays and proteomics", Nature genetics, Vol 32 Suppl pp. 526-532, 2002
[69] G. Kijanka, S. Ipcho, S. Baars et al, "Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays", Journal of immunological methods, Vol 340(2), pp. 132-137, 2009
[70] G.A. Michaud, M. Salcius, F. Zhou et al, "Analyzing antibody specificity with whole proteome microarrays", Nature biotechnology, Vol 21(12), pp. 1509-1512, 2003
[71] P.F. Predki: Functional protein microarrays in drug discovery. Boca Raton, FL: CRC Press; 2007.
[72] K.D. Kumble, "Protein microarrays: new tools for pharmaceutical development", Analytical and bioanalytical chemistry, Vol 377(5), pp. 812-819, 2003
[73] R.P. Huang, "An array of possibilities in cancer research using cytokine antibody arrays", Expert review of proteomics, Vol 4(2), pp. 299-308, 2007
[74] L.J. Holt, K. Bussow, G. Walter et al, "By-passing selection: direct screening for antibody-antigen interactions using protein arrays", Nucleic acids research, Vol 28(15), pp. E72, 2000
[75] A. Lueking, M. Horn, H. Eickhoff et al, "Protein microarrays for gene expression and antibody screening", Analytical biochemistry, Vol 270(1), pp. 103-111, 1999
[76] K. Bussow, D. Cahill, W. Nietfeld et al, "A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library", Nucleic acids research, Vol 26(21), pp. 5007-5008, 1998
[77] D.J. Cahill, "Protein and antibody arrays and their medical applications", Journal of immunological methods, Vol 250(1-2), pp. 81-91, 2001
[78] G. Walter, K. Bussow, D. Cahill et al, "Protein arrays for gene expression and molecular interaction screening", Current opinion in microbiology, Vol 3(3), pp. 298-302, 2000
[79] B.B. Haab, "Advances in protein microarray technology for protein expression and interaction profiling", Current opinion in drug discovery & development, Vol 4(1), pp. 116-123, 2001
[80] M.F. Templin, D. Stoll, M. Schrenk et al, "Protein microarray technology", Trends in biotechnology, Vol 20(4), pp. 160-166, 2002
[81] B. Schweitzer, S. Wiltshire, J. Lambert et al, "Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection", Proceedings of the National Academy of Sciences of the United States of America, Vol 97(18), pp. 10113-10119, 2000
[82] D. Guschin, G. Yershov, A. Zaslavsky et al, "Manual manufacturing of oligonucleotide, DNA, and protein microchips", Analytical biochemistry, Vol 250(2), pp. 203-211, 1997
[83] V. Afanassiev, V. Hanemann, S. Wolfl, "Preparation of DNA and protein micro arrays on glass slides coated with an agarose film", Nucleic acids research, Vol 28(12), pp. E66, 2000
[84] S. Kiyonaka, K. Sada, I. Yoshimura et al, "Semi-wet peptide/protein array using supramolecular hydrogel", Nature materials, Vol 3(1), pp. 58-64, 2004
[85] I. Yoshimura, Y. Miyahara, N. Kasagi et al, "Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip", Journal of the American Chemical Society, Vol 126(39), pp. 12204-12205, 2004
[86] P. Arenkov, A. Kukhtin, A. Gemmell et al, "Protein microchips: use for immunoassay and enzymatic reactions", Analytical biochemistry, Vol 278(2), pp. 123-131, 2000
[87] A.Y. Rubina, E.I. Dementieva, A.A. Stomakhin et al, "Hydrogel-based protein microchips: manufacturing, properties, and applications", BioTechniques, Vol 34(5), pp. 1008-1014, 1016-1020, 1022, 2003
[88] B. Kersten, A. Possling, F. Blaesing et al, "Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein-DNA interactions", Analytical biochemistry, Vol 331(2), pp. 303-313, 2004
[89] P. Angenendt, J. Glokler, D. Murphy et al, "Toward optimized antibody microarrays: a comparison of current microarray support materials", Analytical biochemistry, Vol 309(2), pp. 253-260, 2002
[90] P. Bertone, M. Snyder, "Advances in functional protein microarray technology", The FEBS journal, Vol 272(21), pp. 5400-5411, 2005
[91] J. Ziauddin, D.M. Sabatini, "Microarrays of cells expressing defined cDNAs", Nature, Vol 411(6833), pp. 107-110, 2001
[92] Y. Lee, E.K. Lee, Y.W. Cho et al, "ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies", Proteomics, Vol 3(12), pp. 2289-2304, 2003
[93] S. Heyse, H. Vogel, M. Sanger et al, "Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes", Protein science : a publication of the Protein Society, Vol 4(12), pp. 2532-2544, 1995
[94] C. Agaton, M. Uhlen, S. Hober, "Genome-based proteomics", Electrophoresis, Vol 25(9), pp. 1280-1288, 2004
[95] H. Zhu, M. Bilgin, M. Snyder, "Proteomics", Annual review of biochemistry, Vol 72 pp. 783-812, 2003
[96] M.L. Lesaicherre, R.Y. Lue, G.Y. Chen et al, "Intein-mediated biotinylation of proteins and its application in a protein microarray", Journal of the American Chemical Society, Vol 124(30), pp. 8768-8769, 2002
[97] L.R. Paborsky, K.E. Dunn, C.S. Gibbs et al, "A nickel chelate microtiter plate assay for six histidine-containing proteins", Analytical biochemistry, Vol 234(1), pp. 60-65, 1996
[98] C.D. Hodneland, Y.S. Lee, D.H. Min et al, "Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands", Proceedings of the National Academy of Sciences of the United States of America, Vol 99(8), pp. 5048-5052, 2002
[99] G. Hoyer-Hansen, M.J. Hamers, A.N. Pedersen et al, "Loss of ELISA specificity due to biotinylation of monoclonal antibodies", Journal of immunological methods, Vol 235(1-2), pp. 91-99, 2000
[100] W. Kusnezow, J.D. Hoheisel, "Solid supports for microarray immunoassays", Journal of molecular recognition : JMR, Vol 16(4), pp. 165-176, 2003
[101] P.T. Charles, E.R. Goldman, J.G. Rangasammy et al, "Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications", Biosensors & bioelectronics, Vol 20(4), pp. 753-764, 2004
[102] A. Kramer, T. Feilner, A. Possling et al, "Identification of barley CK2alpha targets by using the protein microarray technology", Phytochemistry, Vol 65(12), pp. 1777-1784, 2004
[103] B.A. Stillman, J.L. Tonkinson, "FAST slides: a novel surface for microarrays", BioTechniques, Vol 29(3), pp. 630-635, 2000
[104] P. Peluso, D.S. Wilson, D. Do et al, "Optimizing antibody immobilization strategies for the construction of protein microarrays", Analytical biochemistry, Vol 312(2), pp. 113-124, 2003
[105] L. Belov, P. Huang, N. Barber et al, "Identification of repertoires of surface antigens on leukemias using an antibody microarray", Proteomics, Vol 3(11), pp. 2147-2154, 2003
[106] S. Kanno, Y. Yanagida, T. Haruyama et al, "Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization", Journal of biotechnology, Vol 76(2-3), pp. 207-214, 2000
[107] J. Turkova, "Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function", Journal of chromatography B, Biomedical sciences and applications, Vol 722(1-2), pp. 11-31, 1999
[108] J. Turkova, S. Vohnik, S. Helusova et al, "Galactosylation as a tool for the stabilization and immobilization of proteins", Journal of chromatography, Vol 597(1-2), pp. 19-27, 1992
[109] W. Zhang, M.J. Czupryn, "Free sulfhydryl in recombinant monoclonal antibodies", Biotechnology progress, Vol 18(3), pp. 509-513, 2002
[110] C.A. Rowe, S.B. Scruggs, M.J. Feldstein et al, "An array immunosensor for simultaneous detection of clinical analytes", Analytical chemistry, Vol 71(2), pp. 433-439, 1999
[111] A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova et al, "Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups", Analytical chemistry, Vol 72(16), pp. 3805-3811, 2000
[112] G.P. Anderson, M.A. Jacoby, F.S. Ligler et al, "Effectiveness of protein A for antibody immobilization for a fiber optic biosensor", Biosensors & bioelectronics, Vol 12(4), pp. 329-336, 1997
[113] R.A. Vijayendran, D.E. Leckband, "A quantitative assessment of heterogeneity for surface-immobilized proteins", Analytical chemistry, Vol 73(3), pp. 471-480, 2001
[114] C.A. Burtis, E.R. Ashwood, N.W. Tietz: Tietz textbook of clinical chemistry, 3rd edn. Philadelphia: W.B. Saunders; 1999.
[115] B.I. Fall, B. Eberlein-Konig, H. Behrendt et al, "Microarrays for the screening of allergen-specific IgE in human serum", Analytical chemistry, Vol 75(3), pp. 556-562, 2003
[116] C.P. Paweletz, L. Charboneau, V.E. Bichsel et al, "Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front", Oncogene, Vol 20(16), pp. 1981-1989, 2001
[117] M.A. Coleman, K.A. Miller, P.T. Beernink et al, "Identification of chromatin-related protein interactions using protein microarrays", Proteomics, Vol 3(11), pp. 2101-2107, 2003
[118] V. Espina, A.I. Mehta, M.E. Winters et al, "Protein microarrays: molecular profiling technologies for clinical specimens", Proteomics, Vol 3(11), pp. 2091-2100, 2003
[119] H.E. Neuman de Vegvar, R.R. Amara, L. Steinman et al, "Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen", Journal of virology, Vol 77(20), pp. 11125-11138, 2003
[120] S. Copeland, J. Siddiqui, D. Remick, "Direct comparison of traditional ELISAs and membrane protein arrays for detection and quantification of human cytokines", Journal of immunological methods, Vol 284(1-2), pp. 99-106, 2004
[121] A. Wolf-Yadlin, M. Sevecka, G. MacBeath, "Dissecting protein function and signaling using protein microarrays", Current opinion in chemical biology, Vol 13(4), pp. 398-405, 2009
[122] M.A. Coleman, P.T. Beernink, J.A. Camarero et al, "Applications of functional protein microarrays: identifying protein-protein interactions in an array format", Methods in molecular biology, Vol 385 pp. 121-130, 2007
[123] R. Ehricht, K. Adelhelm, S. Monecke et al, "Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection", Methods in molecular biology, Vol 509 pp. 85-105, 2009
[124] G.A. Michaud, M. Salcius, F. Zhou et al, "Applications of protein arrays for small molecule drug discovery and characterization", Biotechnology & genetic engineering reviews, Vol 22 pp. 197-211, 2006
[125] J. Kerschgens, T. Egener-Kuhn, N. Mermod, "Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics", Trends in molecular medicine, Vol 15(8), pp. 352-358, 2009
[126] X. Zhu, M. Gerstein, M. Snyder, "ProCAT: a data analysis approach for protein microarrays", Genome biology, Vol 7(11), pp. R110, 2006
[127] A.M. White, D.S. Daly, S.M. Varnum et al, "ProMAT: protein microarray analysis tool", Bioinformatics, Vol 22(10), pp. 1278-1279, 2006
[128] M. Reich, T. Liefeld, J. Gould et al, "GenePattern 2.0", Nature genetics, Vol 38(5), pp. 500-501, 2006
[129] E. Morales-Narvaez, H. Monton, A. Fomicheva et al, "Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer’s disease biomarker screening", Analytical chemistry, Vol 84(15), pp. 6821-6827, 2012
[130] A. Sandstrom, R. Andersson, R. Segersvard et al, "Serum proteome profiling of pancreatitis using recombinant antibody microarrays reveals disease-associated biomarker signatures", Proteomics Clinical applications, Vol 6(9-10), pp. 486-496, 2012
[131] J. Drews, "Drug discovery: a historical perspective", Science, Vol 287(5460), pp. 1960-1964, 2000
[132] C. Li, D.M. Lubman, "Analysis of serum protein glycosylation with antibody-lectin microarray for high-throughput biomarker screening", Methods in molecular biology, Vol 723 pp. 15-28, 2011
[133] S. Ek, U. Andreasson, S. Hober et al, "From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies", Molecular & cellular proteomics : MCP, Vol 5(6), pp. 1072-1081, 2006
[134] D. Mattoon, G. Michaud, J. Merkel et al, "Biomarker discovery using protein microarray technology platforms: antibody-antigen complex profiling", Expert review of proteomics, Vol 2(6), pp. 879-889, 2005
[135] M. Sanchez-Carbayo, "Antibody microarrays as tools for biomarker discovery", Methods in molecular biology, Vol 785 pp. 159-182, 2011
[136] B.B. Haab, "Antibody-lectin sandwich arrays for biomarker and glycobiology studies", Expert review of proteomics, Vol 7(1), pp. 9-11, 2010
[137] H. Zhu, S. Hu, G. Jona et al, "Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray", Proceedings of the National Academy of Sciences of the United States of America, Vol 103(11), pp. 4011-4016, 2006
[138] W.H. Robinson, C. DiGennaro, W. Hueber et al, "Autoantigen microarrays for multiplex characterization of autoantibody responses", Nature medicine, Vol 8(3), pp. 295-301, 2002
[139] E.F. Petricoin, K.C. Zoon, E.C. Kohn et al, "Clinical proteomics: translating benchside promise into bedside reality", Nature reviews Drug discovery, Vol 1(9), pp. 683-695, 2002
[140] D.S. Wilson, S. Nock, "Recent developments in protein microarray technology", Angewandte Chemie, Vol 42(5), pp. 494-500, 2003
[141] Y. Hong, L. Liu, S. Pai et al, "Development of multiplexed microarray binding assays for high-throughput drug discovery", Assay and drug development technologies, Vol 7(3), pp. 281-293, 2009
[142] S. Van Sanden, Z. Shkedy, T. Burzykowski et al, "Genomic biomarkers for a binary clinical outcome in early drug development microarray experiments", Journal of biopharmaceutical statistics, Vol 22(1), pp. 72-92, 2012
[143] Y. Fu, Y. Pan, M. Pan et al, "Development of a high-throughput DNA microarray for drug-resistant gene detection and its preliminary application", Journal of microbiological methods, Vol 89(2), pp. 110-118, 2012
[144] V. Pucci, F. Bonelli, "Development of a simple and reliable accurate mass liquid chromatography/electrospray ionization mass spectrometry method for high-resolution accurate mass determinations of new drug entities on a triple quadrupole mass spectrometer", Rapid communications in mass spectrometry : RCM, Vol 21(18), pp. 3051-3059, 2007
[145] K. Buchholz, T.A. Burke, K.C. Williamson et al, "A high-throughput screen targeting malaria transmission stages opens new avenues for drug development", The Journal of infectious diseases, Vol 203(10), pp. 1445-1453, 2011
[146] B.B. Haab, "Applications of antibody array platforms", Curr Opin Biotechnol, Vol 17(4), pp. 415-421, 2006
[147] D. Hamelinck, H. Zhou, L. Li et al, "Optimized normalization for antibody microarrays and application to serum-protein profiling", Mol Cell Proteomics, Vol 4(6), pp. 773-784, 2005
[148] B. Kersten, E.E. Wanker, J.D. Hoheisel et al, "Multiplex approaches in protein microarray technology", Expert Rev Proteomics, Vol 2(4), pp. 499-510, 2005
[149] V. Ball, P. Huetz, A. Elaissari et al, "Kinetics of exchange processes in the adsorption of proteins on solid surfaces", Proc Natl Acad Sci U S A, Vol 91(15), pp. 7330-7334, 1994
[150] S.L. Seurynck-Servoss, C.L. Baird, K.D. Rodland et al, "Surface chemistries for antibody microarrays", Front Biosci, Vol 12 pp. 3956-3964, 2007
[151] B. Lu, M.R. Smyth, R. O’Kennedy, "Oriented immobilization of antibodies and its applications in immunoassays and immunosensors", Analyst, Vol 121(3), pp. 29R-32R, 1996
[152] C.S. Chen, A.J. Baeumner, R.A. Durst, "Protein G-liposomal nanovesicles as universal reagents for immunoassays", Talanta, Vol 67(1), pp. 205-211, 2005
[153] Y.M. Bae, B.K. Oh, W. Lee et al, "Study on orientation of immunoglobulin G on protein G layer", Biosens Bioelectron, Vol 21(1), pp. 103-110, 2005
[154] M.S. Chen, S.L. Guo, Y.C. Cheng et al, "Comparison of Slide Surfaces for the Fabrication of Pain-Related Message Molecule Antibody Microarray", The Chinese Journal of Pain, Vol 20(1), pp. 18-26, 2010
[155] A. Carlsson, C. Wingren, J. Ingvarsson et al, "Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays", European Journal of Cancer, Vol 44(3), pp. 472-480, 2008
[156] D. Hamelinck, H. Zhou, L. Li et al, "Optimized normalization for antibody microarrays and application to serum-protein profiling", Molecular & Cellular Proteomics, Vol 4(6), pp. 773-784, 2005
[157] B. Akerstrom, L. Bjorck, "A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties", The Journal of Biological Chemistry, Vol 261(22), pp. 10240-10247, 1986
[158] W. Wu, H. Slastad, D. de la Rosa Carrillo et al, "Antibody array analysis with label-based detection and resolution of protein size", Molecular & Cellular Proteomics, Vol 8(2), pp. 245-257, 2009
[159] H. Nawa, J. Carnahan, C. Gall, "Bdnf Protein Measured by a Novel Enzyme-Immunoassay in Normal Brain and after Seizure - Partial Disagreement with Messenger-Rna Levels", European Journal of Neuroscience, Vol 7(7), pp. 1527-1535, 1995
[160] G. Weskamp, U. Otten, "An Enzyme-Linked Immunoassay for Nerve Growth-Factor (Ngf) - a Tool for Studying Regulatory Mechanisms Involved in Ngf Production in Brain and in Peripheral-Tissues", Journal of Neurochemistry, Vol 48(6), pp. 1779-1786, 1987
[161] N.B. Liabakk, K. Nustad, T. Espevik, "A Rapid and Sensitive Immunoassay for Tumor-Necrosis-Factor Using Magnetic Monodisperse Polymer Particles", Journal of Immunological Methods, Vol 134(2), pp. 253-259, 1990
[162] W.S. Prince, K.J. Harder, S. Saks et al, "Elisa for Quantitation of Tumor Necrosis Factor-Alpha in Serum", Journal of Pharmaceutical and Biomedical Analysis, Vol 5(8), pp. 793-802, 1987
[163] Y. Frobert, M.C. Nevers, S. Amadesi et al, "A sensitive sandwich enzyme immunoassay for calcitonin gene-related peptide (CGRP): Characterization and application", Peptides, Vol 20(2), pp. 275-284, 1999
[164] G. Hochhaus, W. Sadee, "A Biotin Avidin-Based Enzyme-Immunoassay for Beta-H-Endorphin", Pharmaceutical Research, Vol 5(4), pp. 232-235, 1988
[165] M. Takeyama, K. Mori, F. Takayama et al, "Enzyme-Immunoassay of a Substance-P-Like Immunoreactive Substance in Human Plasma and Saliva", Chemical & Pharmaceutical Bulletin, Vol 38(12), pp. 3494-3496, 1990
[166] E. Sickinger, M. Stieler, B. Kaufman et al, "Multicenter evaluation of a new, automated enzyme-linked immunoassay for detection of human immunodeficiency virus-specific antibodies and antigen", Journal of clinical microbiology, Vol 42(1), pp. 21-29, 2004
[167] M. Devor, "Sodium channels and mechanisms of neuropathic pain", The journal of pain : official journal of the American Pain Society, Vol 7(1 Suppl 1), pp. S3-S12, 2006
[168] R. D’Mello, A.H. Dickenson, "Spinal cord mechanisms of pain", British journal of anaesthesia, Vol 101(1), pp. 8-16, 2008
[169] M. Sanchez-Carbayo, "Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens", Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, Vol 31(2), pp. 103-112, 2010
[170] D.J. States, G.S. Omenn, T.W. Blackwell et al, "Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study", Nature biotechnology, Vol 24(3), pp. 333-338, 2006
[171] A.J. Rai, C.A. Gelfand, B.C. Haywood et al, "HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples", Proteomics, Vol 5(13), pp. 3262-3277, 2005
[172] M. Koopmans, E. de Bruin, G.J. Godeke et al, "Profiling of humoral immune responses to influenza viruses by using protein microarray", Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, Vol 18(8), pp. 797-807, 2012
[173] A.R. de Boer, C.H. Hokke, A.M. Deelder et al, "Serum antibody screening by surface plasmon resonance using a natural glycan microarray", Glycoconjugate journal, Vol 25(1), pp. 75-84, 2008
[174] J. Ingvarsson, C. Wingren, A. Carlsson et al, "Detection of pancreatic cancer using antibody microarray-based serum protein profiling", Proteomics, Vol 8(11), pp. 2211-2219, 2008
[175] Y. Fujii, J.M. Anderson, T. Matsuda, "Antibody-bound cell microarray for immunophenotyping: surface modification and lymphocyte subpopulations", Journal of biomedical materials research Part B, Applied biomaterials, Vol 87(2), pp. 525-537, 2008
[176] J. Nitadori, G. Ishii, K. Tsuta et al, "Immunohistochemical differential diagnosis between large cell neuroendocrine carcinoma and small cell carcinoma by tissue microarray analysis with a large antibody panel", American journal of clinical pathology, Vol 125(5), pp. 682-692, 2006
[177] B. Schweitzer, S. Roberts, B. Grimwade et al, "Multiplexed protein profiling on microarrays by rolling-circle amplification", Nature biotechnology, Vol 20(4), pp. 359-365, 2002
指導教授 李弘謙(Hoong-Chien Lee) 審核日期 2013-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明