博碩士論文 992202032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.188.180.32
姓名 徐柏瑋(HSU, PO-WEI)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(RHEED Studies on Structures of Rh and Rh-Au Bimetallic Nanoclusters on Thin Film Al2O3/NiAl)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) Rh 金屬、Au 金屬及Rh-Au 合金的奈米團簇利用蒸鍍的方法成長在氧化薄膜 θ-Al2O3/NiAl(100) 上,利用高能電子繞射儀(reflection high energy electron diffraction, RHEED)來研究。我們發現Rh 金屬及Rh-Au 合金的奈米團簇有很好的排列行為而且結構及晶格間距受到底層氧化鋁的影響,經由高能電子繞射儀的結構研究,我們發現Rh 金屬及Rh-Au 合金的奈米團簇是 fcc 的結構並且沿著平行 Al2O3(100) 表面以 (100) 面方向成長,其Rh 金屬及Rh-Au 合金的奈米團簇的 [110] 方向平行於 Al2O3(100) 的 [010] 方向,這是個理想的成長方式,Rh 金屬及Rh-Au 合金的奈米團簇 (100) 面和表面的氧化鋁結構互相吻合。而Rh 金屬奈米團簇(3.90 – 4.04 Å)的晶格常數相對於 fcc 結構的 Rh 塊材(3.80 Å)較為膨脹,這樣會使Rh 金屬奈米團簇的 (100) 面有比較好的晶格去吻合表面的氧化鋁。晶格常數會因鍍量及退火溫度而有所下降。在鍍量超過1.9 ML時退火到800 K 以上後會觀察到modulation spots的產生,這樣的情形意味著表面結構不平整,氧化鋁以及鎳鋁合金的結構被Rh金屬奈米團簇所改變。此外我們依然可以觀測到Rh的繞射點,這也表是表面上還存有Rh金屬奈米團簇。Au金屬奈米團簇是fcc的結構且沿著平行Al2O3(100) 表面以 (111) 或者 (100) 面方向成長。Au金屬奈米團簇(4.2 Å)的晶格常數相對於fcc結構的Au塊材(4.02 Å)較為膨脹3 %。在退火超過730 K後,Au金屬奈米團簇會傾向以Au(001)[110]||Al2O3(100)[010]的方向生長。在退火到900 K時繞射圖形會變得較模糊,這是由於部分Au擴散到氧化鋁之下。合金奈米團簇的結構與Rh 金屬奈米團簇相同,並且合金奈米團簇的晶格常數較接近純Rh金屬奈米團簇的晶格常數而非Au金屬奈米團簇的晶格常數,因此我們認為Rh-Au 合金的奈米團簇中的結構主要是由Rh 金屬主導,在鍍量超過1.95 ML (Rh:Au = 0.95:1)將樣品退火到800 K以上後,繞射圖中會出現modulation spots但是由合金形成的繞射點卻不明顯,可知氧化鋁及鎳鋁合金的結構被合金團簇改變,也可以得知只殘存少量合金奈米團簇在表面所以沒有明顯的合金繞射點存在。
摘要(英) The Rh, Au and Rh-Au bimetallic nanoclusters grown from vapor deposition on thin film θ-Al2O3/NiAl(100) have been studied by reflection high energy electron diffraction (RHEED). The results show that the Rh and Rh-Au bimetallic nanoclusters are highly crystalline and their structures and lattice constant are significantly affected by the oxide substrate. Structural analysis based on the RHEED patterns indicates that Rh and Rh-Au bimetallic nanoclusters have a fcc phase and grow with their (001) facets parallel to the θ-Al2O3(100) surface, and with [110] axis along the [010] direction of the θ-Al2O3(100). It is an optimal growth as the fcc (001) facets match better with the oxide surface. The lattice constant of the Rh nanoclusters (3.90 – 4.04 Å) is expanded relative to that of fcc bulk Rh (3.80 Å). The lattice constant decreases with the coverages and annealing temperature. Annealing the Rh nanoclusters at coverage higher than 1.9 ML to the temperature higher than 800 K leads to the ordered intensity modulation spots. The modulation spots imply the substrate become rough. The Al2O3 and the NiAl are structurally modified by Rh nanoclusters. Nevertheless, the reciprocal lattice spots of Rh nanoclusters are still observed in the RHEED patterns, indicating some of Rh nanoclusters remain on the substrate. The Au nanoclusters grown onto the oxide surface are structurally ordered, having a fcc phase and growing with their facets either (111) or (001) parallel to the Al2O3(100) surface at room temperature. The lattice constant of the Au nanoclusters is expanded by about 3 % (4.2 Å) relative to that of fcc bulk Au (4.08 Å). After annealing above 730 K, the Au nanoclusters grow in a preferred orientation, Au(001)[110]||Al2O3(100)[010]. The diffraction pattern becomes fainter at higher annealing temperature (900 K), as some of Au diffuses into the substrate. The structure of the bimetallic nanoclusters is identical to that of the Rh nanoclusters. The lattice constant of the bimetallic nanoclusters is closer to that of the pure Rh nanocluster, rather than that of the pure
iv
Au nanoclusters. The structure of Rh-Au bimetallic nanoclusters is thus dominated by Rh. Annealing the sample above 800 K, the RHEED patterns show modulation spots but no obvious diffraction spots from the bimetallic nanoclusters. The Al2O3 and the NiAl are structurally modified by Rh-Au bimetallic nanoclusters. There are just few bimetallic nanoclusters remaining on the substrate, so no obvious diffraction spots from the bimetallic nanoclusters are exhibited.
關鍵字(中) ★ 銠
★ 奈米團簇
★ 高能電子繞射儀
關鍵字(英) ★ Rh
★ nanocluster
★ RHEED
論文目次 Chapter 1 Introduction 01
Chapter 1 Reference ------------------------------------------------------------------------ 03
Chapter 2 Literature Survey 04
2.1 Aluminum Oxide Grown on NiAl( 100 ) ------------------------------------- 04
2.1.1 NiAl Crystal -------------------------------------------------------------------------- 04
2.1.2 θ-Al2O3 Grown on NiAl(100) ------------------------------------------------------ 06
2.2 Rhodium on Different Substrates ----------------------------------------------- 12
2.2.1 Rhodium on α-Al2O3(0001) -------------------------------------------------- 12
2.2.2 Rhodium on NaCl(001) and KCl(001) ----------------------------------- 15
2.3 Transition Metals on Al2O3 -------------------------------------------------------- 16
2.4 Characterization of Au-Rh Bimetallic Nanoclusters -------------------- 18
Chapter 2 Reference ------------------------------------------------------------------------ 24
Chapter 3 Experimental Apparatus and Procedure 26
3.1 Apparatus and Ultrahigh Vacuum (UHV) System ----------------------- 26
3.1.1 Introduction to Vacuum ------------------------------------------------------------ 27
3.1.2 Reflection High Energy Electron Diffraction ( RHEED ) ------------------- 29
3.1.3 Auger Electron Spectroscopy (AES) --------------------------------------------- 33
3.1.4 Apparatus ----------------------------------------------------------------------------- 35
3.2 Experimental Procedures ---------------------------------------------------------- 37
3.2.1 Sample Cleaning --------------------------------------------------------------------- 37
3.2.2 Oxygen Exposure -------------------------------------------------------------------- 38
3.2.3 Deposition Process ------------------------------------------------------------------- 39
vii
Chapter 3 Reference ------------------------------------------------------------------------ 41
Chapter 4 Results and Discussion 42
4.1 Rh nanoclusters growth on Al2O3/NiAl(100) ------------------------------- 42
4.2 Au nanoclusters growth on Al2O3/NiAl(100) ------------------------------- 53
4.3 Rh-Au bimetallic nanoclusters growth on Al2O3/NiAl(100) ---------- 57
4.4 Renovating Auger Electron Spectroscopy (AES) ------------------------- 63
Chapter 4 Reference ------------------------------------------------------------------------ 68
Chapter 5 Conclusion 69
參考文獻 [1] A. P. Alivisatos, Science 271 (1996) 933
[2] R. E. Palmer, New Sci. 2070 (1996) 38
[3] M. Baumer, H. J. Freund, Prog. Surf. Sci. 61 (1999) 127
[4] G. P. Lopinski, V. I. Merkulov, J. S. Lannin, Phys. Rev. Lett. 80 (1998) 4241
[5] C. R. Henry, Sruf. Sci. Rep. 31 (1998) 231
[6] M. Haruta, Catal. Today 36 (1997) 153
[7] M. Valden, X. Lai, D. W. Goodman, Science 281 (1998) 1647
[1] M. Baumer, H.j. Freund, Prog. Surf. Sci. 61 (1999) 127.
[2] R.M. Jaeger, K. Kuhlenbeck, H.J. Freund, M. Wutting, W. Hoffmann, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[3] P. Gassmann, R. Franchy, H. Ibach, J. Electron Spectrosc. Relat. Phenom. 64-65 (1993) 315.
[4] P. Gassmann, R. Franchy, H Ibach, Surf. Sci. 319 (1994) 95.
[5] R. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[6] J. Mendez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152.
[7] N. Fremy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[8] N. Fremy, V. Maurice, P. Marcus, Surf. Interf. Anal. 34 (2002) 519.
[9] W.C. Lin, C.C. Kuo, M.F. Luo, K.J. Song, M.T. Lin, Appl. Phys. Lett. 86 (2005) 043105.
[10] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, Nanotechnology 17 (2006) 360.
[11] Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa,
Phys. Rev. Lett. 80 (1998) 2877.
[12] D.B. Miracle, Acta Metall. Mater. 41 (1993) 649.
[13] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[14] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[15] Ralf-Peter Blum, Dirk Ahlbehrendt, Horst Niehus, Surface Science 396 (1998) 176-188.
[16] S. Ladas, H. Poppa and Boudart, surface sci. 102 (1981) 151.
[17] D.L. Doering, H. Poppa and J.T. Dickinson, J. Catalysis, 73 (1982) 104.
[18] D.L. Doering, J.T. Dickinson and H. Poppa, J Catalysis 73 (1982) 91
[19] M.F. Gillet and S. Channakhone, J Catalysis, 97 (1986) 427
25
[20] E. Gillet, S. Channakhone and V. Matolin, J Catalysis 97 (1986) 437
[21] V. Matolin, E. Gillet and S. Channakhone, J Catalysis 97 (1986) 448
[22] V. Matolin and E. Gillet, surface sci., 166 (1986) L115.
[23] V. Matolin, E. Gillet and N, Kruse, surface sci., 186 (1987) L541.
[24] H. Poppa, Vacuum. 34 (1984) 1081.
[25] K. as ek, V.Matolín and M. Gillet, Thin Solid Films, 260 (1995) 252.
[26] K. as ek, V.Matolín, Thin Solid Films, 286 (1996) 330.
[27] 溫文華, 國立中央大學物理系碩士論文
[28] M. Klimenkov, S. Nepijko, surface sci., 391 (1997) 27
[29] S.A. Nepijko, M Klimenkov, surface sci., 412/413 (1998) 192
[30] Baumer, M.; Freund H.-J Prog. Surf. Sci. 61 (1999) 127
[31] Campbell, C. T. Surf. Sci. Rep. 27 (1997) 1
[32] L. Óvári, A. Brekó, J.Kiss, J. Phys. Chem. C 112 (2008) 18011
[33] Mezey, L. Z.; Giber, J. Jpn. J. Appl. Phys. 21 (1982) 1569
[34] L. Óvári, A. Brekó, J.Kiss, Langmuir 26 (2010) 2167
[35] Fu, Q.; Wagner, T. Surf. Sci. Rep. 62 (2007) 431
[36] Chado, I.; Scheurer, F.; Bucher, J. P. Phys. Rev. B 64 (2001) 94410
[37] M.F. Luo, M.H. Ten, W.R. Lin, J. Phys. Chem. C 113 (2009) 12419
[38] M.F. Luo, W.R. Lin, G.R. Hu, Phys. Chem. Chem. Phys 13 (2011) 3281
[39] M.F. Luo, W.H. Wen, C.S. Lin, Surf. Sci. 601 (2007) 2139
[1] Peter J. Dobson, An Introduction to Reflection High Energy Electron Diffraction.
[2] Ellaine M. McCash, Surface Chemistry.
[3] John B. Hudson, Surface Science: An Introduction.
[4] 行政院國家科學委員會精密儀器發展中心, 真空技術與應用.
[5] R. Franchy, Surface Science Reports 38 (2000) 195-294.
[6] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942-1951.
[7] F. Jona, J.A. Strozier, Jr., W.S. Young: Rep. Prog Phys. 45 (1982) 527
[8] N,W, Ashcroft and N.D. Mermin, Solid State Physics, Saunders (1976)
[1] V. Maurice, N. Fremy, P. Marcus Surf. Sci. 581 (2005) 88
[2] P. Gassmann, R. Franchy, H. Ibach Surf. Sci. 319 (1994) 95
[3] M.F. Lou, M.H. Ten, C.C. Wang, W.R. Lin J. Phys. Chem. C 113 (2009) 12419
[4] M.F. Lou, G.R. Hu, C.T. Wang, W.R. Lin Phys. Chem. Chem. Phys. 13 (2011) 3281
指導教授 羅夢凡 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明