參考文獻 |
[1] R.B. Gennis, 1989. Biomembranes, Molecular Structure and Function. Springer-Verlag, New York. ISBN 0-387-96760-5
[2] M. Luckey, 2008. Membrane Structural Biology: with Biochemical and Biophysical Foundations. Cambridge University Press. ISBN 978-0-521-85655-3
[3] M. Edidin, Lipids on the frontier: a century of cell-membrane bilayers, Nat Rev Mol Cell Biol 4 (2003) 414-418.
[4] E. Yechiel, M. Edidin, Micrometer-scale domains in fibroblast plasma membranes, J Cell Biol 105 (1987) 755-760.
[5] M. Budatha, T.J. Ningshen, A. Dutta-Gupta, Is hexamerin receptor a GPI-anchored protein in Achaea janata (Lepidoptera: Noctuidae)?, J Biosci 36 (2011) 545-553.
[6] J. Fantini, N. Garmy, R. Mahfoud, N. Yahi, Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases, Expert Rev Mol Med 4 (2002) 1-22.
[7] R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver, J. Fantini, Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins, J Biol Chem 277 (2002) 11292-11296.
[8] D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle, Science 327 (2010) 46-50.
[9] C.-J. Weng, Y.-W. Hsueh, 運用氘核磁共振研究POPE/Ergosterol膜之物理性質, (2005). Thesis
[10] J.L. Rubenstein, B.A. Smith, H.M. McConnell, Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines, Proc Natl Acad Sci U S A 76 (1979) 15-18.
[11] L.K. Tamm, H.M. McConnell, Supported phospholipid bilayers, Biophys J 47 (1985) 105-113.
[12] M. Bagnat, A. Chang, K. Simons, Plasma Membrane Proton ATPase Pma1p Requires Raft Association for Surface Delivery in Yeast, Mol Biol Cell 12 (2001) 4129-4138.
[13] K. Malinska, J. Malinsky, M. Opekarova, W. Tanner, Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells, J Cell Sci 117 (2004) 6031-6041.
[14] P. Zabrocki, I. Bastiaens, C. Delay, T. Bammens, R. Ghillebert, K. Pellens, C. De Virgilio, F. Van Leuven, J. Winderickx, Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson, Biochim Biophys Acta 1783 (2008) 1767-1780.
[15] Y.W. Hsueh, C.J. Weng, M.T. Chen, J. Thewalt, M. Zuckermann, Deuterium NMR study of the effect of ergosterol on POPE membranes, Biophys J 98 (2010) 1209-1217.
[16] K. El Kirat, S. Morandat, Y.F. Dufrene, Nanoscale analysis of supported lipid bilayers using atomic force microscopy, Biochim Biophys Acta 1798 (2010) 750-765.
[17] B. Blagovic, J. Rupcic, M. Mesaric, K. Georgiú, V. Maric, Lipid Composition of Brewer’s Yeast, Food Technology and Biotechnology 39 (2001) 175-181.
[18] C.-Y. Lin, Y.-W. hsueh, The effects of composition and thermal history on the properties of supported lipid bilayers, (2011). Thesis
[19] G. Francius, S. Dufour, M. Deleu, M. Paquot, M.P. Mingeot-Leclercq, Y.F. Dufrene, Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity, Biochim Biophys Acta 1778 (2008) 2058-2068.
[20] S.-S. Chyou, Y.-W. Hsueh, The morphology of DPPC/DOPC bilayers on mica and the substrate effect: an AFM study, (2009). Thesis
[21] G. Bining, C.F. Quate, C. Gerber, Atomic force microscope, Phys Rev Lett 56 (1986) 930-933.
[22] D. Keller, N.B. Larsen, I.M. Moller, O.G. Mouritsen, Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers, Phys Rev Lett 94 (2005) 025701.
[23] D.N. Ganchev, N.J. Cobb, K. Surewicz, W.K. Surewicz, Nanomechanical Properties of Human Prion Protein Amyloid as Probed by Force Spectroscopy, Biophys J 95 (2008) 2909-2915.
[24] C. Canale, M. Jacono, A. Diaspro, S. Dante, Force spectroscopy as a tool to investigate the properties of supported lipid membranes, Microsc Res Tech 73 (2010) 965-972.
[25] K.H. Sheikh, C. Giordani, J.I. Kilpatrick, S.P. Jarvis, Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers, Langmuir 27 (2011) 3749-3753.
[26] Z.V. Leonenko, E. Finot, H. Ma, T.E. Dahms, D.T. Cramb, Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy, Biophys J 86 (2004) 3783-3793.
[27] K. El Kirat, L. Lins, R. Brasseur, Y.F. Dufrene, Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers, Langmuir 21 (2005) 3116-3121.
[28] M.C. Giocondi, F. Besson, P. Dosset, P.E. Milhiet, C. Le Grimellec, Remodeling of ordered membrane domains by GPI-anchored intestinal alkaline phosphatase, Langmuir 23 (2007) 9358-9364.
[29] S. Morandat, K. El Kirat, Membrane resistance to Triton X-100 explored by real-time atomic force microscopy, Langmuir 22 (2006) 5786-5791.
[30] K. El Kirat, V. Dupres, Y.F. Dufrene, Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy, Biochim Biophys Acta 1778 (2008) 276-282.
[31] H.A. Rinia, J.W. Boots, D.T. Rijkers, R.A. Kik, M.M. Snel, R.A. Demel, J.A. Killian, J.P. van der Eerden, B. de Kruijff, Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues, Biochemistry 41 (2002) 2814-2824.
[32] N. Vuong, J.E. Baenziger, L.J. Johnston, Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions, Chem Phys Lipids 163 (2010) 117-126.
[33] M.-Y. Kuo, Y.-W. Hsueh, Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study, (2009). Thesis
[34] J.M. Vanegas, R. Faller, M.L. Longo, Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging, Langmuir 26 (2010) 10415-10418. |