博碩士論文 965402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:54.225.21.228
姓名 蘇佳如(Jagruti Sahoo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Reliable and Efficient Safety-Critical Message Dissemination in Vehicular Ad Hoc Networks)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在陸上交通工具中嵌入一個進階的無線傳輸技術可以大幅提升車輛的安全性。整個網路結構是由裝上無線安全感測裝置的車輛組成,這些感測裝置會主動感知各種不同的安全狀況,而這個結構可以稱之為車載網路(Vehicular ad Hoc Network, VANET)。為了能建造出一個有效又安全的系統,我們必須要傳送兩種不同的安全性訊息:信標(Beacons) 和緊急訊息(Emergency Messages)。其中信標包含了車輛的一些基本狀態,像是位置和速度等,並且每台車會定期與周圍的車輛交換這個訊息。這個動作讓每台車輛可以互相提醒自己周圍的車輛,進而可以幫助車輛回避一些危險的狀況。另外,任何不正常的事件都會產生緊急訊息,而這個緊急訊息會在一個特定的地區內傳播。由此可見,所有的道路狀況和車輛資訊都包含在這兩種安全行訊息中,所以如何有效並確實的傳達這兩種安全系訊息對這個主動感知系統是非常重要的。
在本篇論文中,我們設計了一個在車載網路安全性訊息傳播協定。二元分割輔助廣播BPAP(Binary Partition Assisted Broadcast) 是一個以減少緊急訊息延遲為目標的通訊協定,基本上我們採用二元分割法來選擇轉送節點,這種方法可以減少在每一個節點轉傳之前的延遲,最重要的是,協定的效能不受車輛密度變化的影響。模擬結果顯示,BPAP協定在延遲與訊息傳遞上比現今的車載網路所使用的多點傳輸協定有更好的表現。
為了更準確的更新車輛狀態的資訊,安全的應用程序必須要求信標以100毫秒產生一次,由於在VANET中對安全性的要求,信標的大小可能會有很大的變化(500~800bytes,包括安全的有效載荷)。如果在媒體訪問控制(MAC)層中沒有適當的協調,如此高頻率會容易在車輛密度高的地區造成頻道壅擠。作為直接的結果,信標的可靠度、延遲效能以及緊急訊息會嚴重的受到影響。這種現象會構成挑戰於未來關於道路車輛的高市佔率。因此,我們設計一個基於時槽的媒體訪問控制協議,命名為CCC-MAC(Congestion Controlled Coordinator based MAC),確保不碰撞的安全訊息傳輸存在於大量的車輛中。
此協定核心的設定是將道路區分成多個小段,每小段道路上,透過由當時的協調車輛(local coordinator vehicle)所管理的時段排程機制(time slot scheduling mechanism)來取得傳輸媒介,事實上,此排程機制使用多種數據傳輸速率來降低信標(beacon)的傳輸時間,減輕了頻道的擁塞情況,而基於脈衝的保留機制(pulse-based reservation mechanism)則是快速傳送緊急訊息的重要機制,此外,CCC-MAC協定也有個分配使用未被佔用的傳輸時段的機制,可以增加頻寬的使用效率,從模擬的結果可以看出CCC-MAC也可以適用於不同的車輛密度的情境,更甚的是,在封包接收率(packet reception probability)和安全性訊息的延遲(latency of safety messages)方面,都比目前的媒體訪問控制層協定(MAC layer protocol)有更好的表現。
摘要(英) Embedding advanced wireless communication technologies in road vehicles extends the horizon of vehicular safety to a greater level. The network formed by the equipped vehicles is referred to as Vehicular ad Hoc Network (VANET), which is used for realizing various active-safety applications. Building an efficient safety system on road requires dissemination of two safety-critical messages: beacons and emergency messages. Beacons carry vehicle status (position, velocity, etc.) and are exchanged periodically. They create mutual awareness in the immediate neighborhood and assist vehicles in preventing un-safe situations beforehand. On the other hand, an emergency message is generated in the wake of an abnormal event and is disseminated in a specific geographic area. Reliable and efficient transmission of safety-critical messages is a serious requirement of an active-safety system as the information embedded in those messages relate to critical road situations.
In this thesis, we design protocols for safety-critical message dissemination in VANET scenarios. A multi-hop broadcast protocol BPAB (Binary Partition Assisted Broadcast) is designed with the objective to reduce the latency of emergency messages. Basically, we adopt a binary-partition approach to select a forwarding node. This approach reduces the delay incurred before rebroadcasting at each hop. Most importantly, the protocol performance is unaffected by variation in vehicle density. Simulation results demonstrate that BPAB protocol imparts greater performance in terms of latency when compared with the contemporary multi-hop broadcast protocols for Vehicular Ad Hoc Networks.
For a more accurate update of vehicle status information, safety-applications require beacons to be generated at an interval of 100ms. Because of the security threats in VANETs, the size of a beacon may vary from 500-800 bytes including the security payload. Without proper coordination at the MAC layer, such a high frequency can easily result in channel congestion in regions of high vehicle densities. As a direct consequence, the reliability and latency performance of beacons as well as emergency messages are severely affected. This phenomenon will pose challenges in future with regard to high market penetration of road vehicles. We, therefore, design a time slot based medium access protocol named CCC-MAC (Congestion Controlled Coordinator based MAC) which ensures collision free transmissions of safety-critical messages in presence of significant number of vehicles. The core of the protocol is a configuration in which the road is virtually partitioned into a number of segments. Within a segment, medium access is accomplished by using a time slot scheduling mechanism supervised by a local coordinator vehicle. In fact, the proposed scheduling mitigates channel congestion by reducing the transmission duration of beacons through the use of multiple data rates. A pulse-based reservation mechanism plays the major role in achieving fast dissemination of emergency messages. The CCC-MAC protocol also provides scope for improving bandwidth utilization through a mechanism that controls the reuse of the unoccupied time slots. Simulation results show the ability of CCC-MAC to scale well in different vehicular density scenarios. Moreover, it outperforms existing MAC layer protocols with respect to packet reception probability and latency of safety messages.
關鍵字(中) ★ 信標
★ 黑場
★ 廣播
★ 緊急消息
★ IEEE802.11p
★ 車載隨意網絡
★ 媒體接入控制(MAC)
關鍵字(英) ★ Active-Safety Application
★ Beacon
★ Black Burst
★ Broadcast
★ DSRC
★ Emergency Message
★ IEEE 802.11p
★ Vehicular ad hoc network
★ Medium Access Control(MAC)
論文目次 Abstract in Chinese i
Abstract in English iii
Acknowledgements v
List of Figures xii
List of Tables xiv
List of Abbreviations xv
1 Introduction 1
1.1 Contributions 2
1.1.1 Purpose 2
1.1.2 Motivation 3
1.1.3 Concise Contributions 4
1.2 Thesis Organization 6
2 Preliminary Concepts 7
2.1 DSRC/IEEE 802.11 Standard 7
2.2 VANET Characteristics 8
2.2.1 Dynamic Topology 8
2.2.2 Mobility Pattern 9
2.2.3 Unlimited Battery Power and Storage 9
2.2.4 On Board Sensors, GPS and Digital Road Map 9
2.3 Active-Safety Applications 9
2.4 Safety-Critical Messages 10
2.4.1 Periodic Messages 10
2.4.2 Event-Driven Messages 11
3. Multi-hop Broadcast Protocol for Emergency
Messages 12
3.1 Existing Broadcast Protocols for VANETs 13
3.1.1 Classification 13
3.1.1.1 Probability Based 13
3.1.1.2 Area Based 13
3.1.1.3 Topology Based 15
3.1.1.4 Cluster-based 15
3.1.2 Problem Description 16
3.1.2.1 Longest Waiting Time 16
3.1.2.2 Topology Susceptibility 16
3.2 Binary-Partition Assisted MAC Layer Broadcast
(BPAB) 17
3.2.1 Assumptions 17
3.2.2 Directional Broadcast 18
3.2.2.1 Overview 18
3.2.2.2 Binary partition Phase 19
3.2.2.3 Contention Phase 23
3.2.2.4 Data Transmission 24
3.2.3 Intersection Broadcast 24
3.2.4 Reliability and NAV Setting Method 26
3.2.4.1 NAV for One Contention Phase 28
3.2.4.2 NAV for Multiple Contention Phases 29
3.2.4.3 Implicit Acknowledgement 29
3.2.5 Analysis 30
3.2.5.1 One Hop Delay 31
3.2.5.2 One Hop Message Progress 35
3.2.5.3 Message Dissemination Speed 36
3.2.5.4 Optimal Value of Number of Binary Partitions 37
3.2.6 Validation 38
3.3 Performance Evaluation of BPAB 40
3.3.1 Simulation Set up 40
3.3.2 Protocols Compared 42
3.3.3 Performance Metrics 43
3.3.4 Results and Discussions 44
3.3.4.1 Simple Highway Scenario 44
3.3.4.2 Intersection Scenario 51
4 MAC Protocol for Safety-Critical Messages 53
4.1 Medium Access and Challenges in VANETs 53
4.1.1 Existing MAC Schemes 53
4.1.1.1 Carrier Sense Multiple Access (CSMA) 54
4.1.1.2 Time-Division Multiple Access (TDMA) 55
4.1.1.3 Space-Division Multiple Access (SDMA) 55
4.1.2 Channel Congestion and Framework for Congestion
Control 56
4.1.2.1 Transmit Power Control 57
4.1.2.2 Packet Generation Rate Control 57
4.1.2.3 Transmission Duration Control 58
4.2 Congestion-Controlled Coordinator based MAC
(CCC-MAC) 59
4.2.1 Design Objectives 59
4.2.1.1 Fairness in Data Rate assignment 59
4.2.1.2 Interference avoidance During Multi rate
Transmissions 62
4.2.2 Transmission Period Allocation 63
4.2.2.1 Repetition Distance 64
4.2.2.2 Segment Width 65
4.2.2.3 Division of Beacon Interval 65 4.2.2.4 Initial Deployment Phase 68
4.2.3 Coordinator Selection 68
4.2.4 Beacon Scheduling 69
4.2.5 Inter-Segment Slot Transfer 73
4.2.6 Emergency Message Dissemination 75
4.3 Performance Evaluation of CCC-MAC 78
4.3.1 Simulation setup 78
4.3.2 Protocols Compared 80
4.3.3 Performance Metrics 82
4.3.4 Results and Discussions 82
4.3.4.1 Beacon Traffic 82
4.3.4.2 Mixed (Beacon as well as Emergency Message)
Traffic 87
5 Conclusion and Future Works 91
Bibliography 92
參考文獻 [1] S. V. Bana and P. Varaiya, “Space division multiple access (SDMA) for robust ad hoc vehicle communication networks,” in Proc. IEEE ITSC, 2001, pp. 962-967.
[2] M. Barradi, A. S. Hafid and J. R. Gallardo, “Establishing strict priorities in IEEE 802.11p WAVE vehicular networks”, in Proc. IEEE GLOBECOM, 2010, pp. 1-6.
[3] Y. Bi, L.X. Cai, X. Shen, H. Zhao, "Efficient and Reliable Broadcast in Intervehicle Communication Networks: A Cross-Layer Approach,” IEEE Trans. Veh. Tech. , vol. 59, no. 5, pp. 2404-2417, Jun. 2010.
[4] K. Bilstrup, E. Uhlemann, E.G. Strom and U. Bilstrup, “On the ability of the 802.11 p MAC method and STDMA to support real-time vehicle-to-vehicle communication,” EURASIP Journal on Wireless Communications and Networking, 2009:1–13, 2009.
[5] K.S. Bilstrup, E. Uhlemann and E. Strom, "Scalability Issues of the MAC Methods STDMA and CSMA of IEEE 802.11p When Used in VANETs," in Proc. IEEE ICC, 2010, pp. 1-5.
[6] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-Vehicle Wireless Communication Protocols for Enhancing Highway Traffic Safety”, IEEE Communication Magazine, vol. 44, no. 1, pp. 74-82, Jan. 2006.
[7] J. Blum and A. Eskandarian, “A reliable link-layer protocol for robust and scalable intervehicle communications,” IEEE Trans. on ITS, vol. 8, pp. 1-13, Mar. 2007.
[8] J. J. Blum, A. Eskandarian, and L. Hoffman, ”Challenges of Intervehicle Ad Hoc Networks,” IEEE Trans. ITS, vol. 5, no.4, pp. 347-351, Dec. 2004.
[9] L. Bononi and M. D. Felice, “A cross layered MAC and clustering scheme for efficient broadcast in VANETs,” in Proc. IEEE MASS, 2007, pp.1-8.
[10] L. Briesemeister and G. Hommel, “Role-based multicast in highly mobile but sparsely connected ad hoc networks,” in Proc. IEEE/ACM Workshop MobiHOC, 2000, pp. 45-50.
[11] T. Camp, and B. Williams, “Comparison of broadcasting techniques for mobile ad hoc networks,” in Proc. ACM MOBIHOC, 2002, pp. 194- 205.
[12] X. Chen, H. H. Refai and X. Ma, "A Quantitative Approach to Evaluate DSRC Highway Inter-Vehicle Safety Communication," in Proc. IEEE GLOBECOM, 2007, pp. 151-155.
[13] Q. Chen, D. Jiang, V. Taliwal, and L. Delgrossi, “Ieee 802.11 based vehicular communication simulation design for ns-2,” in Proc. ACM VANET, 2006, pp. 50–56.
[14] L. Cheng, B. Henty, D. Stancil, F. Bai, and P. Mudalige, “Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9-GHz dedicated short range communication (DSRC) frequency band,” IEEE J. Sel. Areas Commun., vol. 25, no. 8, pp. 1501–1516, Oct. 2007.
[15] Y. H. Choi, R. Rajkumar, P. Mudalige and F. Bai, “Adaptive location division multiple access for reliable safety message dissemination in VANETs”, in Proc. IEEE ISWCS, 2009, pp. 565-569.
[16] M. Drigo, W. Zhang, R. Baldessari, L. Le, A. Festag, and M. Zorzi, “Distributed Rate Control Algorithm for VANETs (DRCV),” in Proc. ACM VANET, 2010, pp. 119-120.
[17] S. Eichler, “Performance evaluation of the IEEE 802.11p WAVE communication standard,” in Proc. IEEE VTC -Spring, 2007, pp. 2199-2203.
[18] E. Fasolo, A. Zanella, and M. zorzi, “An Effective Broadcast Scheme for Alert Message Propagation in Vehicular Ad hoc Networks.”, in Proc. IEEE ICC 2006, vol. 9, pp. 3960-3965, Jun. 2006.
[19] J. R. Gallardo, D. Makrakis and H. T. Mouftah, “Performance analysis of the EDCA medium access mechanism over the control channel of an IEEE 802.11p WAVE vehicular network,” in Proc. IEEE ICC, 2009, pp. 1-6.
[20] S. Gräfling, P. Mähönen and J. Riihijärvi, “Performance Evaluation of IEEE 1609 WAVE and IEEE 802.11p for Vehicular Communications,” in Proc. IEEE ICUFN, 2010, pp. 344-348.
[21] J. J. Haas and Y. C. Hu, “Communication requirements for crash avoidance,” in Proc. ACM VANET, 2010, pp. 1-10.
[22] M. I. Hassan, H. L. Vu and T. Sakurai, “Performance Analysis of the IEEE 802.11 MAC Protocol for DSRC Safety Applications," IEEE Trans. Veh. Tech., vol. 60, no. 8, pp. 3882-3896, Oct. 2011
[23] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments,” in Proc. IEEE VTC-Spring, 2008, pp. 2036-2040.
[24] S. Katragadda, G. Murthy, R. Rao, M. Kumar, and R. Sachin, “A decentralized location-based channel access protocol for inter-vehicle communication,” in Proc. IEEE VTC-Spring, 2003, pp. 1831–1835.
[25] A. Kochut, A. Vasan, A. Shankar, and A. Agrawala, “Sniffing out the correct physical layer capture model in 802.11b,” in Proc. IEEE ICNP, 2004, pp. 252-261.
[26] G. Korkmaz, E. Ekici, F. Ozguner, and U. Ozguner, “Urban multi-hop broadcast protocol for inter–vehicle communication systems,” in Proc. ACM VANET, 2004, pp.76-85.
[27] G. Korkmaz, E. Ekici, and F. Ozguner, “Black-Burst-Based Multihop Broadcast Protocols for Vehicular Networks,” IEEE Trans. on Veh. Tech., vol. 56, no. 5, pp. 3159-3167, Sep. 2007.
[28] T. Kuhn and J. I. Irigon “An Experimental evaluation of Black Burst Transmissions,” in Proc. ACM MobiWac, 2007, pp. 163-167.
[29] T. D. C. Little and A. Agarwal “An Information Propagation Scheme for VANETs”, in Proc. IEEE Intelligent Transportation Systems, 2005, pp. 155-160.
[30] R. Mangharam, R. Rajkumar, M. Hamilton, P. Mudalige, and F. Bai, "Bounded-latency alerts in vehicular networks," in Proc. IEEE MoVE, 2007, pp. 55-60.
[31] Y. Mertens, M. Wellens and P. Mahonen, “Simulation-based performance evaluation of enhanced broadcast schemes for IEEE 802.11-based vehicular networks, in Proc. IEEE VTC-Spring, 2008, pp. 3042–3046.
[32] J. Mittag, F. Schmidt-Eisenlohr, M. Killat, J. Härri, and H. Hartenstein, “Analysis and design of effective and low-overhead transmission power control for VANETs,” in Proc. ACM VANET, 2008, pp. 39-48.
[33] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in a mobile ad hoc network,” in Proc. ACM/IEEE MOBICOM, 1999, pp. 152-162.
[34] C. E. Palazzo, S. Ferretti, M. Roccetti, G. Pau, and M. Gerla, “How do You Quickly Choreograph Inter-Vehicular Communications? A fast Vehicle-to-Vehicle Multi-Hop Broadcast Algorithm, explained”, in Proc. IEEE CCNC, 2007, pp. 960-964.
[35] Yu Qiangyuan and G. Heijenk; "Abiding Geocast for Warning Message Dissemination in Vehicular Ad Hoc Networks," in Proc. IEEE ICC Workshops, 2008, pp. 400-404.
[36] K. Ramachandran, M. Gruteser, R. Onishi, and T. Hikita, “Experimental Analysis of Broadcast Reliability in Dense Vehicular Networks”, IEEE Vehicular Technology Magazine, vol.2, no.4, pp.26-32, Dec. 2007.
[37] M. Raya and J. Hubaux, “The security of vehicular ad hoc networks,” in Proc. ACM Workshop SASN, 2005, pp. 11–21.
[38] R. Reinders, E.M. van Eenennaam, G. Karagiannis and G. Heijenk, “Contention window analysis for beaconing in VANETs,” in Proc. IEEE IWCMC, 2011, pp. 1481-1487.
[39] J. Sahoo, E. H. Wu, P.K. Sahu and M. Gerla, “Binary Partition Assisted MAC Layer Broadcast for Emergency Message Dissemination in VANETs”, in IEEE Trans. On ITS, vol. 12, No. 3, pp. 757-770, Sep. 2011.
[40] J. L. Sobrinho, and A.S. Krishnakumar,” Quality-of-Serive in Ad Hoc Carrier Sense Multiple Access Wireless Network,” IEEE J Sel. Areas Commun., vol. 17, no. 8, pp. 1353–1368, Aug. 1999.
[41] M. -T. Sun, W. -C. Feng, T.-H. Lai, K. Yamada, H. Okada, and K. Fujimura, “GPS-based message broadcast for adaptive inter-vehicle communications,” in Proc. VTC-Fall, 2000, pp. 2685-2692.
[42] A. Takahashi and N. Asanuma, "Introduction of Honda ASV-2 (advanced safety vehicle-phase 2)," in Proc. IEEE Intelligent Vehicles Symposium, 2000, pp. 694-701.
[43] A. Tang and A. Yip, “Collision avoidance timing analysis of DSRC based vehicles,” Accident Anal. Prevention, vol. 42, no. 1, pp. 182–195, Jan. 2010.
[44] M. Torrent Moreno, J. Mittag, P. Santi, and H. Hartenstein, “Vehicle-to-vehicle communication: fair transmit power control for safety-critical information.” IEEE Trans. Veh. Technol., vol. 58, pp. 3684-3703, Sep. 2009.
[45] M. Torrent-Moreno, M. Killat, and H. Hartenstein, ” The Challenges of Robust Inter- Vehicle Communications,” in Proc. IEEE VTC-Fall 2005, vol. 1, pp. 319 - 323, Sep. 2005.
[46] M. Torrent-Moreno, D. Jiang, and H. Hartenstein, “Broadcast Reception Rates and Effects of Priority Access in 802.11-based Vehicular Ad-Hoc Networks,” in Proc. ACM VANET, 2004, pp. 10-18.
[47] A. Vinel, D. Staehle and A. Turlikov, “Study of beaconing for car-to-car communication in vehicular ad-hoc networks,” in Proc. IEEE ICC, 2009, pp. 1-5.
[48] N. Wisitpongphan, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai, and V. Sadekar,” Broadcast Storm Mitigation Techniques in Vehicular Ad Hoc Networks”, IEEE Wireless Communications Magazine, vol. 14, no. 6, pp. 84-94, Dec. 2007.
[49] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in DSRC,” in Proc. ACM VANET, 2004, pp. 19-28.
[50] X. Yang, J. Liu, F. Zhao and N. Vaidya, “A Vehicle-to-Vehicle Communication Protocol for Cooperative Collision Warning,” in Proc. ACM MobiQuitous, 2004, pp. 114- 123.
[51] Y.-T. Yang, and L. –D. Chou , “Position-based Adaptive Broadcast Protocol for Inter-Vehicle Communications,” in Proc. IEEE ICC , 2008, pp. 410-414.
[52] F. Yu and S. Biswas, “Self-configuring TDMA protocols for enhancing vehicle safety with DSRC based vehicle-to-vehicle communications,” IEEE J. Sel. Area Comm., vol. 25, no. 8, pp. 1526–1537, Oct. 2007.
[53] A. Zanella, G. Pierobon, and S. Merlin, “On the limiting performance of broadcast algorithms over unidimensional ad-hoc radio networks,” in Proceedings of WPMC04, Abano Terme, Padova, Sep. 2004.
[54] Y. Zang, L. Stibor, X. Cheng, H. J. Reumerman, A. Paruzel and A. Barroso, “Congestion control in wireless networks for vehicular safety applications” in Proc. 8th European Wireless Conference (ECRR), 2007, pp. 7.
[55] W. Zhang, A. Festag, R. Baldessari, and L. Lc, "Congestion control for safety messages in VANETs : Concepts and framework," in Proc. ITSI, 2008, pp . 199-203.
[56] Car2Car Communication (C2CC) Consortium. http://www.car2car.org.
[57] COMeSafety (Communications for eSafety). [Online]. Available: www.comesafety.org.
[58] COMeSafety consortium, "031: European ITS Communication Architecture: Overall
Framework Proof of Concept Implementation", COMeSafety European Specific Support Action Public Deliverable, Dec. 2009.
[59] Coopers, [ Online]. Available: http://www.coopers-ip.eu.
[60] CVIS (Cooperative Vehicle-Infrastructure Systems), [Online]. Available: www.cvisproject.org.
[61] C2C-CC (Car2Car Communication Consortium). [Online]. Available: www.car-to-car.org.
[62] Dedicated Short Range Communications (DSRC). [Online]. Available: http://www.leearmstrong.com/DSRC/DSRCHomeset.htm.
[63] eSafety, [ Online]. Available: http://www.esafetysupport.org.
[64] IEEE Draft Std P802.11p /D9.0, Sep 2009. [Online]. Available: http://ieeexplore.ieee.org/servlet/opac?punumber=5325056.
[65] Safespot. [Online]. Available: http://www.safespot-eu.org.
[66] The Network Simulator—ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns/
[67] VII (Vehicle Infrastructure Initiative). [Online]. Available: www.vehicle-infrastructure.org
[68] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. [Online]. Available: http://easy.intranet.gr/IEEE80211b.pdf.
[69] IEEE Draft Standard for Information Technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 6: Wireless Access in Vehicular Environments. IEEE Std 802.11p, July 2010.
指導教授 吳曉光(Eric Hsiao-Kuang Wu) 審核日期 2013-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明