以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:18.117.76.180
姓名 張岱瑋(Tai-Wei Chang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 責任週期電壓模式磁滯控制升壓型轉換器
(Duty Cycle Voltage Mode Hysteretic Control Boost Converter)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 可攜式電子產品市場是技術進步的一個背後推力。隨著裝置尺寸持續的縮小、減少矽面積,也藉由降低供應電源來減少數位電路的功耗。但是各部份的電路有自己特定的供應電壓而非單一供應電源,所以藉由電源管理單元直流對直流轉換器來滿足不同和多變的電源需求。此電源轉換電路必須是低功率消耗與高轉換效能,以增加電池的壽命與延長電池的工作時間,所以本論文提出了一個責任週期電壓模式磁滯控制升壓型穩壓器。
本論文所提出的責任週期電壓模式磁滯控制升壓型穩壓器,其原理主要利用磁滯比較器來隨時偵測輸出電壓與參考電壓的值,並且利用一固定週期脈衝或一低準位訊號控制功率電晶體開關,可以得到快速的暫態響應以及高的轉換效率。另外也針對電路啟動初期,會有電流過充的現象,而增加一緩啟動電路的方式來減少過充電流的幅度。
此責任週期電壓模式磁滯控制升壓型穩壓器的電路設計是以台灣積體電路製造股份有限公司0.35μm 3.3V互補式金氧半製程來實現,工作電壓的範圍為1.5V~3.5V,輸出電壓為4V,操作頻率為1MHz,負載電流範圍為0.05A~0.3A,最大轉換效能為94.15%,在輸出負載電流為300mA時,轉換效能仍然有85.08%。摘要(英) The portable electronic product market is a thrust behind significant technological progress. As the device size continues to shrink, reducing silicon area, and also by reducing the supply of power to reduce the power consumption of digital circuits. But most specific supply voltage instead of a single power supply circuit, so by the power management unit DC-DC converters to meet the different and changing power needs. These power converters must have low power consumption and high efficiency to extend the service time of portable electronics. Thus, a high efficiency duty cycle voltage mode hysteretic control boost converter is presented in this thesis.
This thesis proposes a duty cycle voltage mode hysteretic control boost converter that use the hysteresis comparator to compare output voltage and reference voltage. And also use a fixed cycle pulse and low-level signal to control power MOSFETs. It has a fast transient response and high efficiency. And during the start-up period, there was a over-current problem, so we reduce the magnitude of over-current by adding a soft-start circuit.
This proposed duty cycle voltage mode hysteretic control boost converter is implemented with TSMC 0.35μm 3.3V CMOS process. In the proposed boost converter, the operation voltage is from 1.5V to 3.5V, the output voltage is 4V, the operation frequency is 1MHz, the output current is from 0.05A to 0.3A, and the highest efficiency is 94.15%, when the output load current is 300mA, the efficiency is still 85.08%.關鍵字(中) ★ 電壓模式
★ 磁滯控制
★ 升壓型轉換器關鍵字(英) ★ Voltage Mode
★ Hysteretic Control
★ Boost Converter論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究背景簡介 1
1.2 研究動機 2
1.3 論文架構 3
第二章 直流轉直流穩壓器概論 4
2.1 穩壓器的種類 4
2.1.1 線性穩壓器 (Linear Regulator) 5
2.1.2 切換式電容穩壓器 (Switching Capacitance Regulator) 6
2.1.3 切換式穩壓器 (Switching Regulator) 7
2.2 切換式穩壓器分類 9
2.2.1 升壓型轉換器 (Boost Converter or Step-Up Converter) 9
2.2.2 其他類型轉換器 14
2.3 控制電路方法 16
2.3.1 脈波寬度調變 (Pulse Width Modulation, PWM) 16
2.3.2 脈波頻率調變 (Pulse Frequency Modulation, PFM) 17
2.4 切換式穩壓器規格定義與說明 19
2.4.1 輸入電壓 (Input Voltage) 19
2.4.2 輸出電壓漣波 (Output Voltage Ripple) 19
2.4.3 線性調節度 (Line Regulation) 20
2.4.4 負載調節度 (Load Regulation) 20
2.4.5 暫態響應 (Transient Response) 21
2.4.6 轉換效能 (Efficiency) 22
2.4.7 電磁干擾 (Electromagnetic Interference, EMI) 25
第三章 升壓型切換式穩壓器架構 26
3.1 控制電路分類 26
3.1.1 電壓模式控制 (Voltage Mode Control) 26
3.1.2 電流模式控制 (Current Mode Control) 27
3.1.3 磁滯控制 (Hysteretic Control) 28
3.2 磁滯控制分類 30
3.2.1 電流模式磁滯控制 (Current Mode Hysteretic Control) 30
3.2.2 電壓模式磁滯控制 (Voltage Mode Hysteretic Control) 34
第四章 升壓切換式穩壓器電路設計與模擬 41
4.1 責任週期電壓模式磁滯控制升壓型轉換器 41
4.1.1 比較器電路 (Comparator Circuit) 47
4.1.2 非重疊電路與驅動電路(Nonoverlap and Driver Circuit) 49
4.2 責任週期電壓模式磁滯控制升壓型轉換器模擬結果 51
4.2.1 暫態模擬 53
4.2.2 線性調節度 (Line Regulation) 54
4.2.3 負載調節度 (Load Regulation) 55
4.2.4 轉換效能 (Efficiency) 56
4.3 Post-layout simulation 59
第五章 結論 63
5.1 結論 63
5.2 未來改進方向 63
參考文獻 65參考文獻 [1] 顧馨文,「產業分析 全球類比晶片市場縱觀」,南港IC設計育成中心,2010年6月。
[2] H. H. Ko, “A high efficiency synchronous CMOS switching buck regulator with accurate current sensing technique,” MS Thesis, Department of Electrical Engineering, National Central University, 2007.
[3] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator, ” IEEE Journal of Solid-State Circuits, vol.33, no.1, pp.36-44, Jan 1998
[4] J. Itoh, K. Matsuura, and K. Orikawa, “Reduction of a boost inductance using a switched capacitor DC-DC converter, ” 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp.1315-1322, May 30 2011-June 3 2011
[5] R. W. Erickson and D. Maksimovic, “Fundamentals of power electronics, ” 2nd edition, John Wiley, New York, 1950.
[6] M. K. Kazimierczuk, “Pulse-width modulated DC-DC power converters, ” John Wiley and Sons, 2008.
[7] Y. S. Kim, B. M. No, J. S. Min, A. S. Said, and A. Derek, “On-chip current sensing circuit for current-limited minimum off-time PFM boost converter, ” 2009 International SoC Design Conference (ISOCC), pp.544-547, 22-24 Nov. 2009
[8] H. W. Whittington, B. W. Flynn, and D. E. Macpherson, “Switched mode power supplies: design and construction, ” 2nd edition, Kluwer Academic Publishers, 2001.
[9] Travis Eichhorn, “Boost Converter Efficiency Through Accurate Calculations, ” Power Electronics Technology, 2008.
http://powerelectronics.com/power_management/809PET-boost-converter-efficiency-calculations.pdf
[10] C. C. Chen, “A high efficiency current mode control DC-DC buck converter,” MS Thesis, Department of Electrical Engineering, National Central University, 2010.
[11] S. Y. Wang, “Improved light-load efficiency for switched mode buck converter using PWM operated power-save Mode,” MS Thesis, Department of Electrical Engineering, National Tsing-Hua University, 2004.
[12] EPARC,電力電子學綜論,全華科技圖書股份有限公司,2007。
[13] Y. J. Lin, “A boost regulator with voltage-mode control for low voltage applications,” MS Thesis, Department of Electrical Engineering, National Cheng-Kung University, 2006.
[14] X. Jing and P. Mok, “Soft-start circuit with duty ratio controlled voltage clamping and adaptive sizing technique for integrated dc-dc converters, ” 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp.1-4, 15-17 Dec. 2010
[15] M. Castilla, L. G. de Vicuna, J. M. Guerrero, J. Matas, and J. Miret, “Designing VRM hysteretic controllers for optimal transient response,” IEEE Transactions on Industrial Electronics, vol.54, no.3, pp.1726-1738, June 2007
[16] A. Hasan, S. Gregori, I. Ahmed, and R. Chik, “Monolithic DC-DC boost converter with current-mode hysteretic control, ” 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp.001242-001245, 8-11 May 2011
[17] R. Redl, and J. Sun, “Ripple-based control of switching regulators – an overview,” IEEE Transactions on Power Electron., vol.24, no.12, pp.2669-2680, Dec. 2009
[18] C. F. Lee, and P. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current sensing technique,” IEEE Journal of Solid-State Circuits, vol.39, no.1, pp. 3- 14, Jan. 2004
[19] H. Y. Luo, “Automatic synthesis flow of DC to DC step-down converter circuit,” MS Thesis, Department of Electrical Engineering, National Central University, 2011.
[20] J. C. Tsai, C. L. Chen, and K. H. Chen, “Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, no.8, pp.1967-1979, Aug. 2011
[21] Y. P. Su, Y. C Chen, and K. H. Chen, “Current-Mode Synthetic Control (CSC) Technique for High Efficiency DC-DC Boost Converters Over a Wide Load Range,” 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp.933-936, 15-18 May 2011指導教授 魏慶隆、陳竹一
(Chin-Long Wey、Jwu-E Chen)審核日期 2013-1-9 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare