參考文獻 |
[1] S. Sanei, and J. A. Chambers, EEG Signal Processing: Wiley, 2008.
[2] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and systems: Prentice Hall, 1997.
[3] G. Pfurtscheller, C. Brunner, A. Schlogl, and F. H. Lopes da Silva, “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” Neuroimage, vol. 31, no. 1, pp. 153-159, 2006.
[4] P. L. Lee, Y. T. Wu, L. F. Chen, Y. S. Chen, C. M. Cheng, T. C. Yeh et al., “ICA-based spatiotemporal approach for single-trial analysis of postmovement MEG beta synchronization,” Neuroimage, vol. 20, no. 4, pp. 2010-2030, 2003.
[5] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc R Soc Lond A, vol. 454, no. 1971, pp. 903-995, 1998.
[6] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode decomposition as a filter bank,” IEEE Signal Process Lett, vol. 11, no. 2, pp. 112-114, 2004.
[7] Z. Wu, N. E. Huang, S. R. Long, and C.-K. Peng, “On the trend, detrending, and variability of nonlinear and nonstationary time series,” Proc Nat Acad Sci USA, vol. 104, no. 38, pp. 14889-14894, 2007.
[8] W. Huang, Z. Shen, N. E. Huang, and Y. C. Fung, “Use of intrinsic modes in biology: Examples of indicial response of pulmonary blood pressure to ± step hypoxia,” Proc Nat Acad Sci USA, vol. 95, no. 22, pp. 12766-12771, 1998.
[9] R. Balocchi, D. Menicucci, E. Santarcangelo, L. Sebastiani, A. Gemignani, B. Ghelarducci et al., “Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition,” Chaos, Solitons Fractals, vol. 20, no. 1, pp. 171-177, 2004.
[10] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc R Soc A, vol. 454, no. 1971, pp. 903-995, 1998.
[11] W. Huang, Z. Shen, N. E. Huang, and Y. C. Fung, “Engineering analysis of biological variables: An example of blood pressure over 1 day,” Proc Nat Acad Sci USA, vol. 95, pp. 4816-4821, 1998.
[12] N. Stevenson, M. Mesbah, and B. Boashash, "A sampling limit for the empirical mode decomposition." pp. 647-650.
[13] N. E. B. Huang, MD, US), Computing frequency by using generalized zero-crossing applied to intrinsic mode functions, United States,to The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (Washington, DC, US), 2006.
[14] G. Rilling, and P. Flandrin, "Sampling effects on the Empirical Mode Decomposition," HAL - CCSD, 2006.
[15] C. S. Herrmann, “Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Exp Brain Res, vol. 137, no. 3-4, pp. 346-353, 2001.
[16] M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu, “Human cerebral activation during steady-state visual-evoked responses,” J Neurosci, vol. 23, no. 37, pp. 11621-11627, 2003.
[17] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, “A Practical VEP-based Brain-Computer Interface,” IEEE Trans Neural Syst Rehabil Eng, vol. 14, no. 2, pp. 234-239, 2006.
[18] M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and implementation of a brain-computer interface with high transfer rates,” IEEE Trans Biomed Eng, vol. 49, no. 10, pp. 1181-1186, 2002.
[19] S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication,” IEEE Trans Neural Syst Rehabil Eng, vol. 13, no. 2, pp. 172-178, 2005.
[20] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly et al., “Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment,” EURASIP JASP, vol. 19, pp. 3156-3164, 2005.
[21] G. R. Muller-Putz, E. Eder, S. C. Wriessnegger, and G. Pfurtscheller, “Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI,” J Neurosci Methods, vol. 168, no. 1, pp. 174-181, 2008.
[22] G. R. Muller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, “Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components,” J Neural Eng, vol. 2, no. 4, pp. 123-130, 2005.
[23] T. M. Srihari Mukesh, V. Jaganathan, and M. R. Reddy, “A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces,” Physiol Meas, vol. 27, no. 1, pp. 61-71, 2006.
[24] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, “Brain-computer interfaces based on the steady-state visual-evoked response,” IEEE Trans Rehabil Eng, vol. 8, no. 2, pp. 211-214, 2000.
[25] B. Z. Allison, D. J. McFarland, G. Schalk, S. D. Zheng, M. M. Jackson, and J. R. Wolpaw, “Towards an independent brain-computer interface using steady state visual evoked potentials,” Clin Neurophysiol, vol. 119, no. 2, pp. 399-408, 2008.
[26] D. Zhang, X. Gao, S. Gao, A. K. Engel, and A. Maye, “An independent brain-computer interface based on covert shifts of non-spatial visual attention,” Conf Proc IEEE Eng Med Biol Soc, vol. 2009, pp. 539-542, 2009.
[27] M. S. Treder, and B. Blankertz, “(C)overt attention and visual speller design in an ERP-based brain-computer interface,” Behav Brain Funct, vol. 6, pp. 28, 2010.
[28] L. Zhonglin, Z. Changshui, W. Wei, and G. Xiaorong, “Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs,” IEEE Trans Biomed Eng, vol. 54, no. 6, pp. 1172-1176, 2007.
[29] J. S. Barlow, “EMG artifact minimization during clinical EEG recordings by special analog filtering,” Electroen Clin Neuro, vol. 58, no. 2, pp. 161-174, 1984.
[30] D. Hagemann, and E. Naumann, “The effects of ocular artifacts on (lateralized) broadband power in the EEG,” Clin Neurophysiol, vol. 112, no. 2, pp. 215-231, 2001.
[31] P. He, G. Wilson, and C. Russell, “Removal of ocular artifacts from electro-encephalogram by adaptive filtering,” Med Biol Eng Comput, vol. 42, no. 3, pp. 407-412, 2004.
[32] T. N. Cornsweet, Visual perception: Academic Press 1970.
[33] G. Tamas, I. Szirmai, L. Palvolgyi, A. Takats, and A. Kamondi, “Impairment of post-movement beta synchronisation in parkinson’s disease is related to laterality of tremor,” Clin Neurophysiol, vol. 114, no. 4, pp. 614-623, 2003.
[34] J. Decety, and F. Michel, “Comparative analysis of actual and mental movement times in two graphic tasks,” Brain Cogn, vol. 11, no. 1, pp. 87-97, 1989.
[35] C. Andrew, and G. Pfurtscheller, “Event-related coherence during finger movement: a pilot study,” Biomed Tech (Berl), vol. 40, no. 11, pp. 326-332, 1995.
[36] P. Clochon, J. Fontbonne, N. Lebrun, and P. Etevenon, “A new method for quantifying EEG event-related desynchronization:amplitude envelope analysis,” Electroencephalogr Clin Neurophysiol, vol. 98, no. 2, pp. 126-129, 1996.
[37] W. Klimesch, H. Russegger, M. Doppelmayr, and T. Pachinger, “A method for the calculation of induced band power: implications for the significance of brain oscillations,” Electroen Clin Neuro, vol. 108, no. 2, pp. 123-130, 1998.
[38] G. Pfurtscheller, and A. Aranibar, “Event-related cortical desynchronization detected by power measurements of scalp EEG,” Electroencephalogr Clin Neurophysiol, vol. 42, no. 6, pp. 817-826, 1977.
[39] G. Pfurtscheller, and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin Neurophysiol, vol. 110, no. 11, pp. 1842-1857, 1999.
[40] G. Florian, and G. Pfurtscheller, “Dynamic spectral analysis of event-related EEG data,” Electroencephalogr Clin Neurophysiol, vol. 95, no. 5, pp. 393-396, 1995.
[41] R. Salmelin, and R. Hari, “Characterization of spontaneous MEG rhythms in healthy adults,” Electroen Clin Neuro, vol. 91, no. 4, pp. 237-248, 1994.
[42] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Analysis and visualization of single-trial event-related potentials,” Hum Brain Mapp, vol. 14, no. 3, pp. 166-185, 2001.
[43] A. Y. Kaplan, A. A. Fingelkurts, A. A. Fingelkurts, S. V. Borisov, and B. S. Darkhovsky, “Nonstationary nature of the brain activity as revealed by EEG/MEG: Methodological, practical and conceptual challenges,” Signal Processing, vol. 85, no. 11, pp. 2190-2212, 2005.
[44] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev Mod Phys, vol. 65, no. 2, pp. 413-497, 1993.
[45] A. Vallabhaneni, and B. He, “Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis,” Neurol Res, vol. 26, no. 3, pp. 282-287, 2004.
[46] M. P. Deiber, M. H. Giard, and F. Mauguiere, “Separate generators with distinct orientations for N20 and P22 somatosensory evoked potentials to finger stimulation?,” Electroencephalogr Clin Neurophysiol, vol. 65, no. 5, pp. 321-334, 1986.
[47] J. E. Desmedt, and G. Cheron, “Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components,” Electroencephalogr Clin Neurophysiol, vol. 52, no. 6, pp. 553-570, 1981.
[48] D. S. Dinner, H. Luders, R. P. Lesser, and H. H. Morris, “Cortical generators of somatosensory evoked potentials to median nerve stimulation,” Neurology, vol. 37, no. 7, pp. 1141-1145, 1987.
[49] J. Huttunen, “Does the P35m SEF deflection really come from the motor cortex?,” Electroencephalogr Clin Neurophysiol, vol. 104, no. 1, pp. 101-102, 1997.
[50] T. D. Waberski, H. Buchner, M. Perkuhn, R. Gobbele, M. Wagner, W. Kucker et al., “N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials,” Clin Neurophysiol, vol. 110, no. 9, pp. 1589-1600, 1999.
[51] M. Kajola, A. Ahonen, M. S. Hamalainen, J. Knuutila, O. V. Lounasmaa, J. Simola et al., “Development of multichannel neuromagnetic instrumentation in Finland,” Clin Phys Physiol Meas, vol. 12 Suppl B, pp. 39-44, 1991.
[52] J. Rosell, R. Casanas, and H. Scharfetter, “Sensitivity maps and system requirements for magnetic induction tomography using a planar gradiometer,” Physiol Meas, vol. 22, no. 1, pp. 121-130, 2001.
[53] J. A. Hartigan, and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,” J R Stat Soc Ser C Appl Stat, vol. 28, no. 1, pp. 100-108, 1979.
[54] R. Salmelin, and R. Hari, “Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement,” Neuroscience, vol. 60, no. 2, pp. 537-550, 1994.
[55] L. Leocani, C. Toro, P. Manganotti, P. Zhuang, and M. Hallett, “Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements,” Electroencephalogr Clin Neurophysiol, vol. 104, no. 3, pp. 199-206, 1997.
[56] G. Pfurtscheller, K. Pichler-Zalaudek, B. Ortmayr, J. Diez, and Reisecker, “Postmovement Beta Synchronization in Patients With Parkinson’s Disease,” J Clin Neurophysiol, vol. 15, no. 3, pp. 243-250, 1998.
[57] J. C. Echeverria, J. A. Crowe, M. S. Woolfson, and B. R. Hayes-Gill, “Application of empirical mode decomposition to heart rate variability analysis,” Med Biol Eng Comput, vol. 39, no. 4, pp. 471-9, 2001.
[58] W. Huang, Z. Shen, N. E. Huang, and Y. C. Fung, “Nonlinear indicial response of complex nonstationary oscillations as pulmonary hypertension responding to step hypoxia,” Proc Natl Acad Sci U S A, vol. 96, no. 5, pp. 1834-1839, 1999.
[59] N. E. Huang, M.-L. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen et al., “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc R Soc Lond A, vol. 459, no. 2037, pp. 2317-2345, 2003.
[60] F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D. J. McFarland, N. Birbaumer et al., “An auditory brain-computer interface (BCI),” J Neurosci Methods, vol. 167, no. 1, pp. 43-50, 2008.
[61] F. Lopes da Silva, “Neural mechanisms underlying brain waves: from neural membranes to networks,” Electroencephalogr Clin Neurophysiol, vol. 79, no. 2, pp. 81-93, 1991.
[62] M. Palus, “Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos,” Biol Cybern, vol. 75, no. 5, pp. 389-396, 1996.
[63] C. Babiloni, A. Brancucci, F. Babiloni, P. Capotosto, F. Carducci, F. Cincotti et al., “Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study,” Eur J Neurosci, vol. 18, no. 6, pp. 1692-1700, 2003.
[64] W. Gaetz, and D. Cheyne, “Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG,” Neuroimage, vol. 30, no. 3, pp. 899-908, 2006.
[65] A. Stancak, Jr., B. Feige, C. H. Lucking, and R. Kristeva-Feige, “Oscillatory cortical activity and movement-related potentials in proximal and distal movements,” Clin Neurophysiol, vol. 111, no. 4, pp. 636-650, 2000.
[66] M. L. Stavrinou, L. Moraru, L. Cimponeriu, S. Della Penna, and A. Bezerianos, “Evaluation of cortical connectivity during real and imagined rhythmic finger tapping,” Brain Topogr, vol. 19, no. 3, pp. 137-145, 2007.
[67] S. Makeig, T. P. Jung, A. J. Bell, D. Ghahremani, and T. J. Sejnowski, “Blind separation of auditory event-related brain responses into independent components,” Proc Natl Acad Sci U S A, vol. 94, no. 20, pp. 10979-10984, 1997.
[68] J. Gross, J. Kujala, M. Hamalainen, L. Timmermann, A. Schnitzler, and R. Salmelin, “Dynamic imaging of coherent sources: Studying neural interactions in the human brain,” Proc Natl Acad Sci U S A, vol. 98, no. 2, pp. 694-699, 2001.
[69] C. D. Tesche, M. A. Uusitalo, R. J. Ilmoniemi, M. Huotilainen, M. Kajola, and O. Salonen, “Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources,” Electroencephalogr Clin Neurophysiol, vol. 95, no. 3, pp. 189-200, 1995.
[70] G. Kobal, and C. Hummel, “Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa,” Electroencephalogr Clin Neurophysiol, vol. 71, no. 4, pp. 241-250, 1988.
[71] T. S. Lorig, “The application of electroencephalographic techniques to the study of human olfaction: a review and tutorial,” Int J Psychophysiol, vol. 36, no. 2, pp. 91-104, 2000.
[72] L. Cui, and W. J. Evans, “Olfactory event-related potentials to amyl acetate in congenital anosmia,” Electroencephalogr Clin Neurophysiol, vol. 102, no. 4, pp. 303-306, 1997.
[73] C. Murphy, C. D. Morgan, M. W. Geisler, S. Wetter, J. W. Covington, M. D. Madowitz et al., “Olfactory event-related potentials and aging: normative data,” Int J Psychophysiol, vol. 36, no. 2, pp. 133-145, 2000.
[74] S. Barz, T. Hummel, E. Pauli, M. Majer, C. J. Lang, and G. Kobal, “Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease,” Neurology, vol. 49, no. 5, pp. 1424-1431, 1997.
[75] R. L. Doty, C. Li, L. J. Mannon, and D. M. Yousem, “Olfactory dysfunction in multiple sclerosis: relation to longitudinal changes in plaque numbers in central olfactory structures,” Neurology, vol. 53, no. 4, pp. 880-882, 1999.
[76] C. D. Morgan, and C. Murphy, “Olfactory event-related potentials in Alzheimer’s disease,” J Int Neuropsychol Soc, vol. 8, no. 6, pp. 753-763, 2002.
[77] C. Daniels, B. Gottwald, B. M. Pause, B. Sojka, H. M. Mehdorn, and R. Ferstl, “Olfactory event-related potentials in patients with brain tumors,” Clin Neurophysiol, vol. 112, no. 8, pp. 1523-1530, 2001.
[78] M. W. Geisler, C. R. Schlotfeldt, C. B. Middleton, M. F. Dulay, and C. Murphy, “Traumatic brain injury assessed with olfactory event-related brain potentials,” J Clin Neurophysiol, vol. 16, no. 1, pp. 77-86, 1999.
[79] T. Hummel, E. Pauli, P. Schuler, B. Kettenmann, H. Stefan, and G. Kobal, “Chemosensory event-related potentials in patients with temporal lobe epilepsy,” Epilepsia, vol. 36, no. 1, pp. 79-85, 1995.
[80] P. L. Lee, L. Z. Shang, Y. T. Wu, C. H. Shu, J. C. Hsieh, Y. Y. Lin et al., “Single-trial analysis of cortical oscillatory activities during voluntary movements using empirical mode decomposition (EMD)-based spatiotemporal approach,” Ann Biomed Eng, vol. 37, no. 8, pp. 1683-1700, 2009.
[81] P. Rombaux, A. Mouraux, B. Bertrand, J. M. Guerit, and T. Hummel, “Assessment of olfactory and trigeminal function using chemosensory event-related potentials,” Neurophysiol Clin, vol. 36, no. 2, pp. 53-62, 2006.
[82] M. Rothe, Handbook of olfaction and gustation: WILEY-VCH Verlag GmbH, 2003.
[83] T. Hummel, and G. Kobal, “Chemosensory event-related potentials to trigeminal stimuli change in relation to the interval between repetitive stimulation of the nasal mucosa,” Eur Arch Otorhinolaryngol, vol. 256, no. 1, pp. 16-21, 1999.
[84] L. Wang, V. E. Walker, H. Sardi, C. Fraser, and T. J. C. Jacob, “The correlation between physiological and psychological responses to odour stimulation in human subjects,” Clin Neurophysiol, vol. 113, no. 4, pp. 542-551, 2002.
[85] S. Wetter, and C. Murphy, “A paradigm for measuring the olfactory event-related potential in the clinic,” Int J Psychophysiol, vol. 49, no. 1, pp. 57-65, 2003.
[86] M. W. Geisler, and C. Murphy, “Event-related brain potentials to attended and ignored olfactory and trigeminal stimuli,” Int J Psychophysiol, vol. 37, no. 3, pp. 309-315, 2000.
[87] S. Nordin, M. Martinkauppi, J. Olofsson, T. Hummel, E. Millqvist, and M. Bende, “Chemosensory perception and event-related potentials in self-reported chemical hypersensitivity,” Int J Psychophysiol, vol. 55, no. 2, pp. 243-255, 2005.
[88] J. W. Covington, M. W. Geisler, J. Polich, and C. Murphy, “Normal aging and odor intensity effects on the olfactory event-related potential,” Int J Psychophysiol, vol. 32, no. 3, pp. 205-214, 1999.
[89] W. J. Evans, G. Kobal, T. S. Lorig, and J. D. Prah, “Suggestions for collection and reporting of chemosensory (olfactory) event-related potentials,” Chem Senses, vol. 18, no. 6, pp. 751-756, 1993.
[90] T. Hummel, S. Barz, E. Pauli, and G. Kobal, “Chemosensory event-related potentials change with age,” Electroencephalogr Clin Neurophysiol, vol. 108, no. 2, pp. 208-217, 1998.
[91] T. Hummel, T. Futschik, J. Frasnelli, and K.-B. Hüttenbrink, “Effects of olfactory function, age, and gender on trigeminally mediated sensations: a study based on the lateralization of chemosensory stimuli,” Toxicol Lett, vol. 140-141, pp. 273-280, 2003.
[92] J. N. Lundstrom, J. Frasnelli, M. Larsson, and T. Hummel, “Sex differentiated responses to intranasal trigeminal stimuli,” Int J Psychophysiol, vol. 57, no. 3, pp. 181-186, 2005.
[93] C. D. Morgan, M. W. Geisler, J. W. Covington, J. Polich, and C. Murphy, “Olfactory P3 in young and older adults,” Psychophysiology, vol. 36, no. 3, pp. 281-287, 1999.
[94] C. D. Morgan, J. W. Covington, M. W. Geisler, J. Polich, and C. Murphy, “Olfactory event-related potentials: older males demonstrate the greatest deficits,” Electroencephalogr Clin Neurophysiol, vol. 104, no. 4, pp. 351-358, 1997.
[95] B. M. Pause, B. Sojka, K. Krauel, G. Fehm-Wolfsdorf, and R. Ferstl, “Olfactory information processing during the course of the menstrual cycle,” Biol Psychol, vol. 44, no. 1, pp. 31-54, 1996.
[96] J. K. Olofsson, D. A. Broman, M. Wulff, M. Martinkauppi, and S. Nordin, “Olfactory and chemosomatosensory function in pregnant women assessed with event-related potentials,” Physiol Behav, vol. 86, no. 1-2, pp. 252-257, 2005.
[97] R. Masago, Y. Shimomura, K. Iwanaga, and T. Katsuura, “The Effects of Hedonic Properties of Odors and Attentional Modulation on the Olfactory Event-Related Potentials,” J Physiol Anthropol Appl Human Sci, vol. 20, no. 1, pp. 7-13, 2001.
[98] E. Caccappolo, H. Kipen, K. Kelly-McNeil, S. Knasko, R. M. Hamer, B. Natelson et al., “Odor perception: multiple chemical sensitivities, chronic fatigue, and asthma,” J Occup Environ Med, vol. 42, no. 6, pp. 629-638, 2000.
[99] A. Livermore, and T. Hummel, “The influence of training on chemosensory event-related potentials and interactions between the olfactory and trigeminal systems,” Chem Senses, vol. 29, no. 1, pp. 41-51, 2004.
[100] G. Barbati, R. Sigismondi, F. Zappasodi, C. Porcaro, S. Graziadio, G. Valente et al., “Functional source separation from magnetoencephalographic signals,” Hum Brain Mapp, vol. 27, no. 12, pp. 925-934, 2006.
[101] A. Belouchrani, K. A. Meraim, J. F. Cardoso, and E. Moulines, “A blind source separation technique using second order statistics,” IEEE Trans on Sig Proc, vol. 45, pp. 434-444, 1997.
[102] A. C. Tang, B. A. Pearlmutter, N. A. Malaszenko, and D. B. Phung, “Independent components of magnetoencephalography: single-trial response onset times,” Neuroimage, vol. 17, no. 4, pp. 1773-1789, 2002.
[103] K. H. Knuth, A. S. Shah, W. A. Truccolo, M. Ding, S. L. Bressler, and C. E. Schroeder, “Differentially variable component analysis: Identifying multiple evoked components using trial-to-trial variability,” J Neurophysiol, vol. 95, no. 5, pp. 3257-3276, 2006.
[104] S. D. Georgiadis, P. O. Ranta-aho, M. P. Tarvainen, and P. A. Karjalainen, “Single-trial dynamical estimation of event-related potentials: a Kalman filter-based approach,” IEEE Trans Biomed Eng, vol. 52, no. 8, pp. 1397-1406, 2005.
[105] R. Quian Quiroga, and H. Garcia, “Single-trial event-related potentials with wavelet denoising,” Clin Neurophysiol, vol. 114, no. 2, pp. 376-390, 2003.
[106] Z. Wang, A. Maier, D. A. Leopold, N. K. Logothetis, and H. Liang, “Single-trial evoked potential estimation using wavelets,” Comput Biol Med vol. 37, no. 4, pp. 463-473, 2007.
[107] E. Bingham, and A. Hyvarinen, “A fast fixed-point algorithm for independent component analysis of complex valued signals,” Int J Neural Syst, vol. 10, no. 1, pp. 1-8, 2000.
[108] S. Boesveldt, A. Haehner, H. Berendse, and T. Hummel, “Signal-to-noise ratio of chemosensory event-related potentials,” Clin Neurophysiol, vol. 118, no. 3, pp. 690-695, 2007.
[109] B. M. Battista, C. Knapp, T. McGee, and V. Goebel, “Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data,” Geophysics, vol. 72, no. 2, pp. H29-H37, 2007.
[110] H. Liang, S. L. Bressler, E. A. Buffalo, R. Desimone, and P. Fries, “Empirical mode decomposition of field potentials from macaque V4 in visual spatial attention,” Biol Cybern, vol. 92, no. 6, pp. 380-392, 2005.
[111] T. Tateyama, T. Hummel, S. Roscher, H. Post, and G. Kobal, “Relation of olfactory event-related potentials to changes in stimulus concentration,” Electroencephalogr Clin Neurophysiol, vol. 108, no. 5, pp. 449-455, 1998.
[112] B. M. Pause, K. Krauel, B. Sojka, and R. Ferstl, “Is odor processing related to oral breathing?,” Int J Psychophysiol, vol. 32, no. 3, pp. 251-260, 1999.
[113] F. Cong, T. Sipola, T. Huttunen-Scott, X. Xu, T. Ristaniemi, and H. Lyytinen, “Hilbert-Huang versus Morlet wavelet transformation on mismatch negativity of children in uninterrupted sound paradigm,” Nonlinear Biomed Phys, vol. 3, no. 1, pp. 1, 2009.
[114] N. Williams, S. J. Nasuto, and J. D. Saddy, “Evaluation of Empirical Mode Decomposition for Event-Related Potential Analysis,” EURASIP JASP, vol. 2011, 2011.
[115] T. Solis-Escalante, G. G. Gentiletti, and O. Yanez-Suarez, “Single trial P300 detection based on the Empirical Mode Decomposition,” Conf Proc IEEE Eng Med Biol Soc, vol. 1, pp. 1157-1160, 2006.
[116] N. ur Rehman, and D. P. Mandic, “Filter Bank Property of Multivariate Empirical Mode Decomposition,” IEEE Trans Sig Proc, vol. 59, no. 5, pp. 2421-2426, 2011.
[117] A. Y. Mutlu, and S. Aviyente, “Multivariate empirical mode decomposition for quantifying multivariate phase synchronization,” EURASIP J Adv Sig Pr, vol. 2011, pp. 1-13, 2011.
[118] J. Fleureau, A. Kachenoura, L. Albera, J.-C. Nunes, and L. Senhadji, “Multivariate empirical mode decomposition and application to multichannel filtering,” Signal Processing, vol. 91, no. 12, pp. 2783-2792, 2011.
[119] M. J. Kaminski, and K. J. Blinowska, “A new method of the description of the information flow in the brain structures,” Biol Cybern, vol. 65, no. 3, pp. 203-210, 1991.
[120] B. Kocsis, and M. Kaminski, “Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system,” Hippocampus, vol. 16, no. 6, pp. 531-540, 2006.
[121] L. A. Baccala, and K. Sameshima, “Partial directed coherence: a new concept in neural structure determination,” Biol Cybern, vol. 84, no. 6, pp. 463-474, 2001.
[122] E. Florin, J. Gross, J. Pfeifer, G. R. Fink, and L. Timmermann, “The effect of filtering on Granger causality based multivariate causality measures,” Neuroimage, vol. 50, no. 2, pp. 577-588, 2010. |