參考文獻 |
[1] D. Smith, Welding Skills and Technology, McGraw-Hill Book Co., 1989.
[2] B. C. Howard, Modern Welding Technology, Prentice-Hall, Inc. Englewood Cliffs,
1979.
[3] Y. M. Zhang, E. Liguo and B. L. Walcott, “Interval model based control of gas
metal arc welding”, IEEE International Conference, American Control Conference,
Vol. 3, pp. 1752-1756, 1998.
[4] P. Verdelho, P. M. Silva, E. Margato and J. Esteves, “An electronic welder control
circuit”, IEEE International Conference, Industrial Electronics Society, Vol. 2, pp.
612-617, 1998.
[5] H. Yamamoto, “The Development of welding control system for spatter reduction”
, Welding International, Vol.4, No.5, pp. 398-403, 1990.
[6] M. Abdelrahman, “Feedback linearization control of current and arc length in
GMAW systems”, IEEE International Conference, Vol.3, pp. 1757-1761, 1998.
[7] Y. M. Chae and G. H. Choe, “A new instantaneous output current control method
for inverter arc welding machine”, IEEE, PRCS’99 Proceeding, vol. 1. pp. 521-528, 1999.
[8] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers”,
Trans. ASME, Vol.64, pp.759-768, 1942.
[9] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller, Part I”, IEEE
Trans. System Man Cybernet, Vol. SMC-20, pp. 404-418, 1990.
[10] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller, Part II”,
IEEE Trans. System Man Cybernet, Vol. SMC-20, pp. 419-435, 1990.
[11] H. T. Nguyen, C. W. Tao and W. E. Thompson, “An empirical study of robustne-
ss of fuzzy system”, Proc. of 2nd IEEE Intl. Conf. on Fuzzy System, pp. 1340-1345.
[12] M. Mizumoto, “Realization of PID controls by fuzzy control methods”, Fuzzy
Sets and Systems, Vol.70, pp.171-182, 1995.
[13] A. Visioli, “Tuning of PID controllers with fuzzy logic”, IEE Proc. Control Theo-
-ry Appl., Vol.148, No.1, pp.1-8, 2001.
[14] A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes
”, IEE Proc. Control Theory Appl., Vol.148, No.2, pp.180–182, 2001.
[15] T. P. Blanchett, G. C. Kenber and R. Dubay, “PID gain scheduling using fuzzy
logic”, ISA Transactions, Vol.39, pp.317-325, 2000.
[16] Z. Y. Zhao, M. Tomisuka and S. Isaka, “Fuzzy gain scheduling of PID control-
ers”, IEEE Transactions on System, Vol.23, No.5, pp.1392-1398, 1993.
[17] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor. MI:
Univ. Press, 1975.
[18] J. H. Holland, “Outline for a logical theory of adaptive systems”, J. ACM, Vol. 3 ,
297-314, 1962.
[19] D. E. Goldberg, Genetic Algorithms in Search Optimization & Machine Learn-
ing, Addison-Wesley Publishing Company, 1989.
[20] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers,
World Scientific, Singapore, 1999.
[21] C. T. Sun. Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River,
1997.
[22] T. Y. Chen and C. J. Chen, “Improvement of simple genetic algorithm in structure
design”, International Journal for Numerical Method in Engineering, Vol. 40, pp.
1324-1334, 1997.
[23] J. C. Potts, T. D. Giddens and S. B. Yadav, “The development and evaluation of
an improved genetic algorithm based on migration and artificial selection”, IEEE
Trans. Systems Man Cybernet, Vol. 24, pp. 73-86, 1994.
[24] M. Srinivas and L. M. Patnaik, “Genetic algorithm: a survey”, Computer, Vol.
276, pp. 17-26, 1994.
[25] Y. Huang and W. Messner, “A novel disturbance observer design for magnetic
hard drive servo system with a rotary actuator”, Proc. IEEE Transactions on
Magnetic, Vol. 34, No. 4, pp. 1892-1894, 1998.
[26] S. Komada, N. Machi and T. Hori, “Control of redundant manipulators consider-
ing order of disturbance observer”, Proc. IEEE Transactions on Industrial Electics
, Vol. 47, No. 2, pp. 413-420, 2000.
[27] B. K. Kim and W. K. Chung, “Advanced disturbance observer design for mecha-
nical positioning systems”, Proc. IEEE Transactions on Industrial Electrics, Vol.
50, No. 6, pp. 1207-1216, 2003.
[28] E. Kim, “A fuzzy disturbance observer and its application to control”, Proc. IEEE
Transactions on Fuzzy Systems, Vol. 10, No. 1, pp. 77-84, 2002.
[29] M. Iwasaki, T. Shibata and N. Matsui, “Disturbance-observer-based nonlinear
friction compensation in table drive system”, Proc. IEEE/ASME Transactions on
Mechatronics, Vol. 4, No. 1, pp. 3-8, 1999.
[30] X. Chen, S. Komada and T. Fukuda, “Design of a nonlinear disturbance observer
”, Proc. IEEE Transactions on Industrial Electrics, Vol. 47, No.2, pp. 429-437,
2000.
[31] W. H. Chen, “Disturbance observer based control for nonlinear systems”, Proc.
IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 4, pp. 706-716, 2004.
[32] T. Senjyu, T. Kashiwagi and K. Uezato, “Position control of ultrasonic motors
using MRAC with dead-zone compensation”, Proc. IEEE Transactions on Ind-
ustrial Electrics, Vol. 48, No.6, pp. 1278-1285, 2001.
[33] B. Friedland and Y. J. Park, “On adaptive friction compensation”, Proc. IEEE
Transactions on Automatic Control, Vol. 37, No. 10, pp. 1609-1612, 1992.
[34] C. C. D. Wit, H. Olsson, K. J. Astrom and P. Lischinsky, “A new model for con-
trol of systems with friction”, Proc. IEEE Transactions on Automatic Control,
Vol. 40, No. 3, pp. 419-425, 1995.
[35] Q. P. Ha, D. C. Rye and H. F. Druuant-Whyte, “Variable structure systems appro-
oach to friction estimation and compensation”, Proc. IEEE International Confere-
nce on Robotics and Automation San Francisco, CA, pp. 3543-3548, 2000.
[36] Y. Tan, J. Chang and H. Tan, “Adaptive backstepping control and friction comp-
ensation for AC servo with inertia and load uncertainties”, Proc. IEEE Transacti-
ons on Industrial Electrics, Vol. 50, No.5, pp. 944-952, 2003.
[37] A. Bauchspiess, S. C. Absi-Alfaro and L. A. Dobrzanski, “Predictive sensor gui-
ded robotic manipulators in automated welding cells”, Journal of Materials Processing Technology, Vol. 109, No. 1, pp.13-19, 2001.
[38] L. Zhou, T. Lin and S. B. Chen, “Autonomous acquisition of seam coordinates
for arc welding robot based on visual servoing”, Journal of Intelligent and Robo-
tic Systems, Vol. 47, No. 3, pp.239-255, 2006.
[39] T. T. Pan, T. L. Chung, M. D Ngo, H. K. Kim and S. B. Kim, “Decentralized
control design for welding mobile manipulator”, Journal of Mechanical Science
and Technology, Vol. 19, No. 3, pp. 756-767, 2005.
[40] S. Yamane, L. H. Sharif, S. Zeniya and K. Oshima, “Feed forward control of
back bead and bead height in narrow gap robotic welding”, Science and Tech-
nology of Welding and Joining, Vol. 10, No. 1, pp. 23-26, 2005.
[41] X. Huamg and S. B. Chen, “SVM-based fuzzy modeling for the arc welding pro-
cess”, Materials Science and Engineering A-Structural Materials Properties Micr-
ostructure and Processing, Vol. 427, No. 1, pp. 181-187, 2006.
[42] Y. S. Zhang, G. L. Chen and Z. Q. Lin, “Study on weld quality control of resistan-
ce spot welding using a neuro-fuzzy algorithm”, Knowledge-Based Intelligent In-
formation and Engineering Systems, PT 3, Proceedings Lecture Notes in Artificial
Intelligence 3215, pp. 544-550, 2004.
[43] Y. M. Zhang and Y. C. Liu, “Modeling and control of quasi-keyhole arc welding
process”, Control Engineering Practice, Vol. 11, No. 12, pp. 1401-1411, 2003.
[44] Y. W. Wang and Q. Chen, “On-line quality monitoring in plasma arc welding”,
Journal of Materials Processing Technology, Vol. 120, No.1, pp. 270-274, 2002.
[45] M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasma, Fundamentals and
Applications, Plenum Press, 1994.
[46] C. J. Holslag, Arc Welding Handbook, McGraw-Hill, 1924.
[47] T. S. Hu, Arc Welding, Second Edition, Machine Industrial Book Co. Peking,
China, pp. 91-92, 1994.
[48] Y. T. Zheng and S. S. Hang, Arc Welding Power Supply, Second Edition,
Machine Industrial Book Co. Peking, China, pp. 22-30, 1987.
[49] G. E. Cook, “Feedback and adaptive control in automated arc welding systems”,
Metal Construction, Vol. 13, No. 9, pp.551-556, 1981.
[50] B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Inc. Englewood
Cliffs, 1986.
[51] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers”,
Trans. ASME, Vol. 64, pp. 759-768, 1942.
[52] J. E. Baker, “Adaptive selection methods for genetic algorithms”, Proc. Int. Conf.
Genetic Algorithms and Their Applications, pp.101-111, 1985.
[53] H. K. Khalil, Nonlinear Systems, Prentice-Hall, 2000.
[54] J. Y. Hung, W. Gao and J. C. Hung, ”Variable structure control: a survey”, IEEE
Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2-22, 1993.
[55] V. I. Utkin, “ Variable structure systems with sliding modes”, IEEE Transactions
on Automatic Control, Vol. 22, No. 2, pp. 212-222, 1977.
[56] K. K. Shyu, Y. W. Tsai and C. F. Yung, “A modified variable structure controller
”, Automatica, Vol. 28, No. 6, pp. 1209-1213, 1992.
[57] J. Y. Hung, W. B. Gao and J. C. Hung, ”Variable structure control: a survey”,
IEEE Trans. Ind. Electron., Vol.40, pp. 402-422, 1993.
[58] R. A. Decarlo, S. H. Zak and G. P. Matthews, “Variable structure control of nonl-
inear multivariables system: a tutorial”, Proc. IEEE, Vol. 76, No. 3, pp. 212-232,
1998.
[59] K. K. D. Young, “Asymptotic stability of model reference systems with variable
structure control”, IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp.
279-281, 1997.
[60] K. K. D. Young, “Design of variable structure model-following control systems”.
IEEE Transactions on Automatic Control, Vol. 23, No. 6, pp. 279-281, 1978.
[61] S. K. Spurgeon and R. J. Patton, “Robust variable structure control of model refe-
rence system”, IEE Proceedings: Control Theory and Applications, Pt.D. Vol. 137, No. 6, pp. 341-348, 1999.
[62] K. K. Shyu and Liu, C. Y. “Variable structure controller design for robust tracking
and model following”, J. of Guidance Control and Dynamics, Vol. 19, No. 6, pp.
1395-1397, 1996.
[63] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control:
Part Ⅰ: fuzzy switching”, Fuzzy Set and Systems, Vol.122, pp. 21-30, 2001.
[64] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control:
Part Ⅱ: parameter projection and supervisory control”, Fuzzy Set and Systems,
Vol. 122, pp. 31-43, 2001.
[65] T. L. Chung, T. H. Bui, T. T. Nguyen and S. B. Kim, “Sliding mode control of
two-wheeled welding mobile robot for tracking smooth curved welding path”,
KSME International Journal, Vol.18, No. 7, pp. 1094-1106, 2004.
[66] M. M. Abdelhameed, “Enhancement of sliding mode controller by fuzzy logic
with application to robotic manipulators”, Mechatronics, Vol. 15, No. 4, pp. 439
-458, 2005.
[67] S. Li, Applied Nonlinear Control, Prentice-Hall, Inc. Englewood Cliffs, 1991.
[68] J. J. E. Slotine and S. Li, “Sliding controller design for nonlinear systems”, Int. J.
Control, Vol. 40, No. 2, pp. 421-434, 1984.
[69] B. Heck, “Sliding mode control for singularly perturbed systems”, Int. J. Control,
Vol. 53, pp. 985-1001, 1991.
[70] W. Lu, Y. M. Zhang and W. Y. Lin, “Nonlinear interval model control of quasi k-
eyhole arc welding process”, Automatica, Vol.40, No. 5, pp. 805-813, 2004.
[71] Y. W. Huang, P. C. Tung and C. Y. Wu, “Tuning PID control of an automatic arc
welding system using a SMAW process”, The Journal of Advanced Manufactur- ing Technology, Vol. 34, No. 1-2, pp. 56-61, 2008.
[72] W. H. Chu and P. C. Tung, “Development of an automatic arc welding system
using SMAW process”, The Journal of Advanced Manufacturing Technology, Vol. 27, No. 3-4, pp. 281-287, 2005.
[73] C. Y. Lee, P. C. Tung, K. K. Shyu and C. Y. Wu, “Development of an automatic
arc welding system using a variable structure model scheme”, The Journal of Advanced Manufacturing Technology, Vol. 35, No. 3-4, pp. 978-986, 2008.
[74] C. Y. Lee, P. C. Tung and W. H. Chu, “Adaptive fuzzy sliding mode control for
an automatic arc welding system”, The Journal of Advanced Manufacturing Technology, Vol. 29, pp. 481-489, 2006.
[75] J. N. Juang, Applied System Identification, Prentice-Hall, Inc. Englewood Cliffs,
1994.
[76] G. Song, Y. Wang, L. Cai and R. W. Longman, “A sliding-mode based smooth
adaptive robust controller for friction compensation”, Proceedings of the Ame-
rican Control Conference, pp. 1382-1386, June 1995.
[77] L. Ljung, Matlab : System Identification Tool Box Use’s Guide, The Math Works
, Inc. 1997.
[78] S. C. Lin and Y. Y. Chen, “Design of self-learning fuzzy sliding mode control-
lers based on genetic algorithms”, Fuzzy Sets and Systems”, PP. 139-153, 1997.
[79] G. Bartolini, A. Ferrara and E.Usai, “Chattering avoidance by second-order slidi-
ng mode control”, IEEE Transactions on Automatic Control, Vol. 43, No. 2, 1998.
[80] S. Hui and S. Zak, “Robust control synthesis for uncertain/nonlinear dynamic
systems,” Automatica, Vol. 28, No. 2, pp. 289-298, 1999.
[81] K. D. Young, V. I. Utkin and U. Ozguner, “A control engineer’s guide to sliding
mode control”, IEEE Transactions on Control Systems Technology, Vol. 7, No.
3, 1999.
[82] Y. C. Hsu, G. Chen, S. Tong and H. X. Li, “Intelligent fuzzy modeling and adapt-
ive control for nonlinear systems”, Information Science, Vol. 153, pp.217-236,
2003.
[83] P. C. Tung, M. C. Wu and Y. R. Hwang, “An image-guided mobile robotic weld-
ing system for SMAW process”, International Journal of Machine Tools and Ma-
nufacturing, Vol. 44, No.11, pp. 1223-1233, 2004
[84] R. N. Gasimov and A. Yazici, “A nonlinear programming approach for the slidi-
ng mode control design”, Appl. Math Model, Vol. 29, pp. 1135-1148, 2005.
[85] T. L. Baldwin, T. Hogans, S. D. Henry, F. Renovich and P. T. Latkovic, “Reacti-
ve power compensation for voltage control at resistance welders”, IEEE Transac-
tions on Industry Applications, Vol. 41, No.6, pp.1485-1492, 2005.
[86] J. Zhang and B. L. Walcott, “Adaptive interval model control of arc welding pro-
cess”, IEEE Transactions on Control Systems Technology, Vol. 14, No. 6, pp. 1127-1134, 2006.
[87] Modenesi, P. J., Reis, R. I. “A model for melting rate phenomena in GMA weldi-
ng”, Journal of Materials Processing Technology, Vol.189, No.1-3, pp. 199-205,
2007.
[88] M. D. Ngo, V. H. Duy and N. T. Phuong, “Development of digital gas metal arc
welding system”, Journal of Materials Processing Technology, Vol.189, No. 1-3,
pp.384-391, 2007.
[89] Y. M. Zhang and Y. C. Liu, “Control of dynamic keyhole welding process”, Aut-
omatica, Vol. 43, No. 5, pp. 876-884, 2007.
[90] S. M. Yang, M. H. Cho, H. Y. Lee and T. D. Cho, “Weld line detection and proce-
ss control for welding automation”, Measurement Science and Technology, Vol.
18, No. 3, pp. 819-826, 2007.
[91] A. S. Baskoro, R. Masuda, M. Kabutomor and Y. Suga, “An application of gene-
tic algorithm for edge detection of molten pool in fixed pipe welding”, The J. of
Advanced Manufacturing Technology, Vol. 45, No. 11-12, pp. 1104-1112,2009.
[92] Y. Anren, L. Zhen and A. Sansan, ”A CMOS visual sensing system for welding
control and information acquirement in SMAW”, Physics Proceeding, Vol. 25,
pp. 22-29, 2012. |