博碩士論文 93343016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.106.207
姓名 吳政育(Cheng-Yu Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 自動焊接系統之研究
(The Study of Automatic Welding System)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文描述自動遮蔽金屬電弧焊接控制系統的發展,它可以取代需要良好訓練的技工手動焊接操作。雖然機器人焊接在許多的焊接應用上已經取代了人工焊接,但是在發展自動化焊接系統過程中,由於其複雜的系統過程而無法完全開發。目前,有幾種控制方法被應用到這個焊接系統控制上。
首先,我們推導此焊接控制系統的數學模型,它主要由一交流伺服馬達驅動之焊條進給控制機構所組成,此自動化銲接系統可以視為一個焊條進給速度控制系統。當此一系統被當成焊條進給速度控制機構時,我們可以把它當成一階或二階動態系統,"Matlab IDENTIFICATION Toolbox "被用來估測此一階或二階動態系統的最佳合適之參數值。
接下來,我們設計一個以基因演算法為主軸,作為參數鑑別之PID控制器。在模擬與實驗中,當系統加入外部干擾之後,我們的焊接系統就會因為外部干擾的不確定性加入,而無法產生起弧也造成焊接失敗的情形。在外部干擾補償之控制策略,我們利用基因演算法去辨別外部干擾之振幅或頻率。在模擬與實驗中,經外部干擾補償後,焊接系統也可以順利的起弧及保持焊條進給的穩定性。
此後,適應性模態控制器是由等效控制部分與迫進控制部分所組成。從李亞普諾夫函數(Lyapunov function)所推導的適應性法則及設計一個改良型之飽和函數,可以用來得到近似順滑模態控制(Sliding mode control)的等效控制部分。因此,系統可以強迫收斂到零點狀態。因此,可以保證適應性順滑模態控制器的穩定性和用來調節電焊進給機構,以控制SMAW銲接系統的電弧電流大小。在模擬與實驗焊接的結果中,以適應性順滑模態為基礎的控制器,可以使焊接過程更為有效率。
摘要(英) This thesis describes an automatic welding control system developed for alternating current shield metal arc welding (SMAW). It can replace manual operations which require a well-trained technician. Robotic welders have replaced manual human operations in many welding applications, but the automated process control systems have not been fully developed due to the complexity of the process. In current, several methods are applied to control this SMAW system.
First, we derive a mathematical model of the welding control system, which consists primarily of an electrode feed-rate mechanism driven by an AC servomotor. Both first-order and second-order dynamics are used to represent this mechanism, when we consider it for an electrode feed-rate velocity control system. The “Matlab IDENTIFICATION Tool Box” is used to estimate the best-fit values of the parameters of the welding control system, using first-order and second-order dynamics, respectively.
A GA-based PID and adaptive siding mode arc current controllers can be used to modulate the rate of the first-order electrode feed-rate mechanism that regulates the arc current. The electrode feed-rate mechanism for this controller is driven by an AC servomotor which can both compensate for the molted part of the electrode and for the undesirable fluctuations of the arc length during welding operation. It can also be easily applied to any welding system where the electrode is consumed during the welding process. Furthermore, we use GA to cancel and compensate the external force on the SMAW system, not only can effective to accomplish experimental demand, but also can maintain the stability of welding process for the SMAW system. The feasibility and the simplicity of this controller for an SMAW system are verified by a simulation. The experimental results verify the feasibility of the proposed controller and also show that it can effectively perform arc welding, as well as effectively initiate the welding arc.
關鍵字(中) ★ 遮蔽金屬電弧焊接
★ 基因演算法
★ 外力消除
★ 焊接臂
★ 可變結構控制
★ 順滑面
關鍵字(英) ★ SMAW
★ Genetic Algorithm
★ External force cancellation
★ Welding robot
★ Variable structure control
★ Sliding surface
論文目次 Contents
Chinese Abstract………………………...........................................................................i
English Abstract……………………………………..…….………..............................iii
Acknowledge……………………………………..…….……….....................................v
Contents….......................................................................................................................vi
List of Figures……………………………………………………...…….………..........x
List of Tables…………………………………………..………...……........................xiv
Nomenclature……………………………………………………………………….....xvChapter 1 Introduction
1.1 Motivation…………………………………………………………………...…..1
1.2 Literature Survey……………………………………….……………..………....5
1.3 Organization………………………………….…………..…………...…………8
Chapter 2 Arc Welding Process
2.1 Introduction…………………………………………..……………………..….10
2.2 Arc Welding………………………………………………………………….....13
2.2.1 Electrode Arc………………………………………………………..……15
2.2.2 Shielded Metal Arc Electrodes…………………………………………...19
2.3 Shielded Metal Arc Welding ..............................................................................22
2.3.1 SMAW Process ..........................................................................................22
2.3.2 SMAW Current...........................................................................................23
2.3.3 Arc Welding Machine................................................................................27
2.3.4 Advantages and Disadvantages of the SMAW Process ............................28
Chapter 3 Dynamic Model of Automatic SMAW Controlling System
3.1 Automatic Shielded Metal Arc Welding System Control System Modeling…..34
3.2 System Identification………………………………………...…………………40
3.2.1 Introduction………………………………………………………..……..40
3.2.2 The Principle of System Identification………………………………...…43
3.2.3 System Identification Toolbox in Matlab/Simulink……..………….....…45
3.3 Experimental Device………………………………………………………..….48
3.3.1 Current Sensor…………………………………………………...…….....48
3.3.2 Peripheral Interface…………………………………………………...…..49
3.3.2.1 A/D converter………………………………………………........49
3.3.2.2 D/A converter…………………………………………………....50
3.3.3 Experimental Equipments………………………………...……………....50
3.4 Control Algorithm Implementation………………………………………….....51
Chapter 4 Design of GA-based PID Controller
4.1 Introduction……………………………………………………..……………...62
4.2 PID Controller..………………………………………………………………....62
4.3 The Theories of Genetic Algorithm…………………………………………….64
4.4 Genetic Algorithm in Experimental Setup Strategy…………………………....70
Chapter 5 Design of an Adaptive Sliding Mode Controller
5.1 Introduction………………………………………………………………..…...72
5.2 The Principle of Sliding Mode Control ………………………………………..73
5.3 Design of Adaptive Siding Mode Arc Current Controller……………………...76
Chapter 6 Simulation and Experimental Results
6.1 GA-based PID Controller…………………………………..……...……….......84
6.2 Adaptive Sliding Mode Controller………………………………………...…...87
Chapter 7 Conclusion and Future Works
7.1 Conclusion……………………………………………………….……………100
7.2 Future Works…………………………………………………………………..102
References…………………………………………………...…………………....104
Appendixes ……………………………………………………………….............116
Appendix A – Simulink models……………………………………...……......116
Demo_GA_PID.mdl……………………………...…….............................116
Demo_SMC.mdl…………………………….…….....................................116
NCD_PID.mdl……………………...……..................................................117
Appendix B – Txt.files……...…….....................................................................118
Ga_result.txt……...…….............................................................................118
Publication Lists……………………………………………..……………………119
參考文獻 [1] D. Smith, Welding Skills and Technology, McGraw-Hill Book Co., 1989.
[2] B. C. Howard, Modern Welding Technology, Prentice-Hall, Inc. Englewood Cliffs,
1979.
[3] Y. M. Zhang, E. Liguo and B. L. Walcott, “Interval model based control of gas
metal arc welding”, IEEE International Conference, American Control Conference,
Vol. 3, pp. 1752-1756, 1998.
[4] P. Verdelho, P. M. Silva, E. Margato and J. Esteves, “An electronic welder control
circuit”, IEEE International Conference, Industrial Electronics Society, Vol. 2, pp.
612-617, 1998.
[5] H. Yamamoto, “The Development of welding control system for spatter reduction”
, Welding International, Vol.4, No.5, pp. 398-403, 1990.
[6] M. Abdelrahman, “Feedback linearization control of current and arc length in
GMAW systems”, IEEE International Conference, Vol.3, pp. 1757-1761, 1998.
[7] Y. M. Chae and G. H. Choe, “A new instantaneous output current control method
for inverter arc welding machine”, IEEE, PRCS’99 Proceeding, vol. 1. pp. 521-528, 1999.
[8] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers”,
Trans. ASME, Vol.64, pp.759-768, 1942.
[9] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller, Part I”, IEEE
Trans. System Man Cybernet, Vol. SMC-20, pp. 404-418, 1990.
[10] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller, Part II”,
IEEE Trans. System Man Cybernet, Vol. SMC-20, pp. 419-435, 1990.
[11] H. T. Nguyen, C. W. Tao and W. E. Thompson, “An empirical study of robustne-
ss of fuzzy system”, Proc. of 2nd IEEE Intl. Conf. on Fuzzy System, pp. 1340-1345.
[12] M. Mizumoto, “Realization of PID controls by fuzzy control methods”, Fuzzy
Sets and Systems, Vol.70, pp.171-182, 1995.
[13] A. Visioli, “Tuning of PID controllers with fuzzy logic”, IEE Proc. Control Theo-
-ry Appl., Vol.148, No.1, pp.1-8, 2001.
[14] A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes
”, IEE Proc. Control Theory Appl., Vol.148, No.2, pp.180–182, 2001.
[15] T. P. Blanchett, G. C. Kenber and R. Dubay, “PID gain scheduling using fuzzy
logic”, ISA Transactions, Vol.39, pp.317-325, 2000.
[16] Z. Y. Zhao, M. Tomisuka and S. Isaka, “Fuzzy gain scheduling of PID control-
ers”, IEEE Transactions on System, Vol.23, No.5, pp.1392-1398, 1993.
[17] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor. MI:
Univ. Press, 1975.
[18] J. H. Holland, “Outline for a logical theory of adaptive systems”, J. ACM, Vol. 3 ,
297-314, 1962.
[19] D. E. Goldberg, Genetic Algorithms in Search Optimization & Machine Learn-
ing, Addison-Wesley Publishing Company, 1989.
[20] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers,
World Scientific, Singapore, 1999.
[21] C. T. Sun. Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River,
1997.
[22] T. Y. Chen and C. J. Chen, “Improvement of simple genetic algorithm in structure
design”, International Journal for Numerical Method in Engineering, Vol. 40, pp.
1324-1334, 1997.
[23] J. C. Potts, T. D. Giddens and S. B. Yadav, “The development and evaluation of
an improved genetic algorithm based on migration and artificial selection”, IEEE
Trans. Systems Man Cybernet, Vol. 24, pp. 73-86, 1994.
[24] M. Srinivas and L. M. Patnaik, “Genetic algorithm: a survey”, Computer, Vol.
276, pp. 17-26, 1994.
[25] Y. Huang and W. Messner, “A novel disturbance observer design for magnetic
hard drive servo system with a rotary actuator”, Proc. IEEE Transactions on
Magnetic, Vol. 34, No. 4, pp. 1892-1894, 1998.
[26] S. Komada, N. Machi and T. Hori, “Control of redundant manipulators consider-
ing order of disturbance observer”, Proc. IEEE Transactions on Industrial Electics
, Vol. 47, No. 2, pp. 413-420, 2000.
[27] B. K. Kim and W. K. Chung, “Advanced disturbance observer design for mecha-
nical positioning systems”, Proc. IEEE Transactions on Industrial Electrics, Vol.
50, No. 6, pp. 1207-1216, 2003.
[28] E. Kim, “A fuzzy disturbance observer and its application to control”, Proc. IEEE
Transactions on Fuzzy Systems, Vol. 10, No. 1, pp. 77-84, 2002.
[29] M. Iwasaki, T. Shibata and N. Matsui, “Disturbance-observer-based nonlinear
friction compensation in table drive system”, Proc. IEEE/ASME Transactions on
Mechatronics, Vol. 4, No. 1, pp. 3-8, 1999.
[30] X. Chen, S. Komada and T. Fukuda, “Design of a nonlinear disturbance observer
”, Proc. IEEE Transactions on Industrial Electrics, Vol. 47, No.2, pp. 429-437,
2000.
[31] W. H. Chen, “Disturbance observer based control for nonlinear systems”, Proc.
IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 4, pp. 706-716, 2004.
[32] T. Senjyu, T. Kashiwagi and K. Uezato, “Position control of ultrasonic motors
using MRAC with dead-zone compensation”, Proc. IEEE Transactions on Ind-
ustrial Electrics, Vol. 48, No.6, pp. 1278-1285, 2001.
[33] B. Friedland and Y. J. Park, “On adaptive friction compensation”, Proc. IEEE
Transactions on Automatic Control, Vol. 37, No. 10, pp. 1609-1612, 1992.
[34] C. C. D. Wit, H. Olsson, K. J. Astrom and P. Lischinsky, “A new model for con-
trol of systems with friction”, Proc. IEEE Transactions on Automatic Control,
Vol. 40, No. 3, pp. 419-425, 1995.
[35] Q. P. Ha, D. C. Rye and H. F. Druuant-Whyte, “Variable structure systems appro-
oach to friction estimation and compensation”, Proc. IEEE International Confere-
nce on Robotics and Automation San Francisco, CA, pp. 3543-3548, 2000.
[36] Y. Tan, J. Chang and H. Tan, “Adaptive backstepping control and friction comp-
ensation for AC servo with inertia and load uncertainties”, Proc. IEEE Transacti-
ons on Industrial Electrics, Vol. 50, No.5, pp. 944-952, 2003.
[37] A. Bauchspiess, S. C. Absi-Alfaro and L. A. Dobrzanski, “Predictive sensor gui-
ded robotic manipulators in automated welding cells”, Journal of Materials Processing Technology, Vol. 109, No. 1, pp.13-19, 2001.
[38] L. Zhou, T. Lin and S. B. Chen, “Autonomous acquisition of seam coordinates
for arc welding robot based on visual servoing”, Journal of Intelligent and Robo-
tic Systems, Vol. 47, No. 3, pp.239-255, 2006.
[39] T. T. Pan, T. L. Chung, M. D Ngo, H. K. Kim and S. B. Kim, “Decentralized
control design for welding mobile manipulator”, Journal of Mechanical Science
and Technology, Vol. 19, No. 3, pp. 756-767, 2005.
[40] S. Yamane, L. H. Sharif, S. Zeniya and K. Oshima, “Feed forward control of
back bead and bead height in narrow gap robotic welding”, Science and Tech-
nology of Welding and Joining, Vol. 10, No. 1, pp. 23-26, 2005.
[41] X. Huamg and S. B. Chen, “SVM-based fuzzy modeling for the arc welding pro-
cess”, Materials Science and Engineering A-Structural Materials Properties Micr-
ostructure and Processing, Vol. 427, No. 1, pp. 181-187, 2006.
[42] Y. S. Zhang, G. L. Chen and Z. Q. Lin, “Study on weld quality control of resistan-
ce spot welding using a neuro-fuzzy algorithm”, Knowledge-Based Intelligent In-
formation and Engineering Systems, PT 3, Proceedings Lecture Notes in Artificial
Intelligence 3215, pp. 544-550, 2004.
[43] Y. M. Zhang and Y. C. Liu, “Modeling and control of quasi-keyhole arc welding
process”, Control Engineering Practice, Vol. 11, No. 12, pp. 1401-1411, 2003.
[44] Y. W. Wang and Q. Chen, “On-line quality monitoring in plasma arc welding”,
Journal of Materials Processing Technology, Vol. 120, No.1, pp. 270-274, 2002.
[45] M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasma, Fundamentals and
Applications, Plenum Press, 1994.
[46] C. J. Holslag, Arc Welding Handbook, McGraw-Hill, 1924.
[47] T. S. Hu, Arc Welding, Second Edition, Machine Industrial Book Co. Peking,
China, pp. 91-92, 1994.
[48] Y. T. Zheng and S. S. Hang, Arc Welding Power Supply, Second Edition,
Machine Industrial Book Co. Peking, China, pp. 22-30, 1987.
[49] G. E. Cook, “Feedback and adaptive control in automated arc welding systems”,
Metal Construction, Vol. 13, No. 9, pp.551-556, 1981.
[50] B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Inc. Englewood
Cliffs, 1986.
[51] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers”,
Trans. ASME, Vol. 64, pp. 759-768, 1942.
[52] J. E. Baker, “Adaptive selection methods for genetic algorithms”, Proc. Int. Conf.
Genetic Algorithms and Their Applications, pp.101-111, 1985.
[53] H. K. Khalil, Nonlinear Systems, Prentice-Hall, 2000.
[54] J. Y. Hung, W. Gao and J. C. Hung, ”Variable structure control: a survey”, IEEE
Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2-22, 1993.
[55] V. I. Utkin, “ Variable structure systems with sliding modes”, IEEE Transactions
on Automatic Control, Vol. 22, No. 2, pp. 212-222, 1977.
[56] K. K. Shyu, Y. W. Tsai and C. F. Yung, “A modified variable structure controller
”, Automatica, Vol. 28, No. 6, pp. 1209-1213, 1992.
[57] J. Y. Hung, W. B. Gao and J. C. Hung, ”Variable structure control: a survey”,
IEEE Trans. Ind. Electron., Vol.40, pp. 402-422, 1993.
[58] R. A. Decarlo, S. H. Zak and G. P. Matthews, “Variable structure control of nonl-
inear multivariables system: a tutorial”, Proc. IEEE, Vol. 76, No. 3, pp. 212-232,
1998.
[59] K. K. D. Young, “Asymptotic stability of model reference systems with variable
structure control”, IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp.
279-281, 1997.
[60] K. K. D. Young, “Design of variable structure model-following control systems”.
IEEE Transactions on Automatic Control, Vol. 23, No. 6, pp. 279-281, 1978.
[61] S. K. Spurgeon and R. J. Patton, “Robust variable structure control of model refe-
rence system”, IEE Proceedings: Control Theory and Applications, Pt.D. Vol. 137, No. 6, pp. 341-348, 1999.
[62] K. K. Shyu and Liu, C. Y. “Variable structure controller design for robust tracking
and model following”, J. of Guidance Control and Dynamics, Vol. 19, No. 6, pp.
1395-1397, 1996.
[63] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control:
Part Ⅰ: fuzzy switching”, Fuzzy Set and Systems, Vol.122, pp. 21-30, 2001.
[64] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control:
Part Ⅱ: parameter projection and supervisory control”, Fuzzy Set and Systems,
Vol. 122, pp. 31-43, 2001.
[65] T. L. Chung, T. H. Bui, T. T. Nguyen and S. B. Kim, “Sliding mode control of
two-wheeled welding mobile robot for tracking smooth curved welding path”,
KSME International Journal, Vol.18, No. 7, pp. 1094-1106, 2004.
[66] M. M. Abdelhameed, “Enhancement of sliding mode controller by fuzzy logic
with application to robotic manipulators”, Mechatronics, Vol. 15, No. 4, pp. 439
-458, 2005.
[67] S. Li, Applied Nonlinear Control, Prentice-Hall, Inc. Englewood Cliffs, 1991.
[68] J. J. E. Slotine and S. Li, “Sliding controller design for nonlinear systems”, Int. J.
Control, Vol. 40, No. 2, pp. 421-434, 1984.
[69] B. Heck, “Sliding mode control for singularly perturbed systems”, Int. J. Control,
Vol. 53, pp. 985-1001, 1991.
[70] W. Lu, Y. M. Zhang and W. Y. Lin, “Nonlinear interval model control of quasi k-
eyhole arc welding process”, Automatica, Vol.40, No. 5, pp. 805-813, 2004.
[71] Y. W. Huang, P. C. Tung and C. Y. Wu, “Tuning PID control of an automatic arc
welding system using a SMAW process”, The Journal of Advanced Manufactur- ing Technology, Vol. 34, No. 1-2, pp. 56-61, 2008.
[72] W. H. Chu and P. C. Tung, “Development of an automatic arc welding system
using SMAW process”, The Journal of Advanced Manufacturing Technology, Vol. 27, No. 3-4, pp. 281-287, 2005.
[73] C. Y. Lee, P. C. Tung, K. K. Shyu and C. Y. Wu, “Development of an automatic
arc welding system using a variable structure model scheme”, The Journal of Advanced Manufacturing Technology, Vol. 35, No. 3-4, pp. 978-986, 2008.
[74] C. Y. Lee, P. C. Tung and W. H. Chu, “Adaptive fuzzy sliding mode control for
an automatic arc welding system”, The Journal of Advanced Manufacturing Technology, Vol. 29, pp. 481-489, 2006.
[75] J. N. Juang, Applied System Identification, Prentice-Hall, Inc. Englewood Cliffs,
1994.
[76] G. Song, Y. Wang, L. Cai and R. W. Longman, “A sliding-mode based smooth
adaptive robust controller for friction compensation”, Proceedings of the Ame-
rican Control Conference, pp. 1382-1386, June 1995.
[77] L. Ljung, Matlab : System Identification Tool Box Use’s Guide, The Math Works
, Inc. 1997.
[78] S. C. Lin and Y. Y. Chen, “Design of self-learning fuzzy sliding mode control-
lers based on genetic algorithms”, Fuzzy Sets and Systems”, PP. 139-153, 1997.
[79] G. Bartolini, A. Ferrara and E.Usai, “Chattering avoidance by second-order slidi-
ng mode control”, IEEE Transactions on Automatic Control, Vol. 43, No. 2, 1998.
[80] S. Hui and S. Zak, “Robust control synthesis for uncertain/nonlinear dynamic
systems,” Automatica, Vol. 28, No. 2, pp. 289-298, 1999.
[81] K. D. Young, V. I. Utkin and U. Ozguner, “A control engineer’s guide to sliding
mode control”, IEEE Transactions on Control Systems Technology, Vol. 7, No.
3, 1999.
[82] Y. C. Hsu, G. Chen, S. Tong and H. X. Li, “Intelligent fuzzy modeling and adapt-
ive control for nonlinear systems”, Information Science, Vol. 153, pp.217-236,
2003.
[83] P. C. Tung, M. C. Wu and Y. R. Hwang, “An image-guided mobile robotic weld-
ing system for SMAW process”, International Journal of Machine Tools and Ma-
nufacturing, Vol. 44, No.11, pp. 1223-1233, 2004
[84] R. N. Gasimov and A. Yazici, “A nonlinear programming approach for the slidi-
ng mode control design”, Appl. Math Model, Vol. 29, pp. 1135-1148, 2005.
[85] T. L. Baldwin, T. Hogans, S. D. Henry, F. Renovich and P. T. Latkovic, “Reacti-
ve power compensation for voltage control at resistance welders”, IEEE Transac-
tions on Industry Applications, Vol. 41, No.6, pp.1485-1492, 2005.
[86] J. Zhang and B. L. Walcott, “Adaptive interval model control of arc welding pro-
cess”, IEEE Transactions on Control Systems Technology, Vol. 14, No. 6, pp. 1127-1134, 2006.
[87] Modenesi, P. J., Reis, R. I. “A model for melting rate phenomena in GMA weldi-
ng”, Journal of Materials Processing Technology, Vol.189, No.1-3, pp. 199-205,
2007.
[88] M. D. Ngo, V. H. Duy and N. T. Phuong, “Development of digital gas metal arc
welding system”, Journal of Materials Processing Technology, Vol.189, No. 1-3,
pp.384-391, 2007.
[89] Y. M. Zhang and Y. C. Liu, “Control of dynamic keyhole welding process”, Aut-
omatica, Vol. 43, No. 5, pp. 876-884, 2007.
[90] S. M. Yang, M. H. Cho, H. Y. Lee and T. D. Cho, “Weld line detection and proce-
ss control for welding automation”, Measurement Science and Technology, Vol.
18, No. 3, pp. 819-826, 2007.
[91] A. S. Baskoro, R. Masuda, M. Kabutomor and Y. Suga, “An application of gene-
tic algorithm for edge detection of molten pool in fixed pipe welding”, The J. of
Advanced Manufacturing Technology, Vol. 45, No. 11-12, pp. 1104-1112,2009.
[92] Y. Anren, L. Zhen and A. Sansan, ”A CMOS visual sensing system for welding
control and information acquirement in SMAW”, Physics Proceeding, Vol. 25,
pp. 22-29, 2012.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2013-2-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明