博碩士論文 996204014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.141.27.244
姓名 藍一平(Yi-Ping Lan)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 澳洲煤岩氣體吸附模式研究
(A Study of Adsorptive Functions of Gas in Australian Coals)
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
★ 九份-金瓜石地區火成作用對有機物成熟度之影響★ 不同成熟度之有機成分探討
★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究★ 鏡煤素反射率抑制問題與熱模擬之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 控制排放二氧化碳以減少大氣中二氧化碳含量是現今相當重要且極需解決的議題之一。在無法開採的煤層中注入二氧化碳是一種永久封存人為排放二氧化碳的有效方法,同時可以進行煤層氣的開採。CO2-ECBM技術可以改善全球暖化以及增加能源,是一種具發展性的新技術。在評估二氧化碳在煤層中的儲量以及甲烷的生產量時,除了現地所測得的數據外,等溫吸附模式的選擇亦是相當重要的因素。因此本研究之目的為藉由煤岩性質與吸附實驗來探討影響氣體吸附之因素與不同吸附模式之擬合效果。一般而言,煤層氣中主要氣體為甲烷,然而在澳洲某些區域之煤層氣中二氧化碳之含量卻高達90%。澳洲煤層氣的特性可能會對二氧化碳地質封存計畫有所影響。本研究利用澳洲雪梨盆地及包溫盆地之煙煤進行工業分析、元素分析、比表面積分析及CO2、CH4的吸附實驗,然後比較四種較常見的吸附模式:Langmuir、BET、D-R與D-A的計算結果,期望能找到最佳的擬合曲線。在這些吸附方程中,Langmuir為最基本且常用的理論方程。煤吸附甲烷氣體的計算結果顯示D-A方程有最佳的擬合效果,其次為Langmuir及D-R, BET則最差。BET方程在相對壓力大於0.8時吸附量會大幅增加導致相對誤差值變大。D-A方程與其他三種吸附方程最大的差異在於多了一個異質性參數,此參數與孔隙組成及分布有一定的相關性,可能使D-A方程能夠更貼切的描述煤吸附氣體的行為。
摘要(英) Ever since the Kyoto Protocol, controlling carbon dioxide emission and reducing its content in atmosphere are very important environmental issues up to today. One of the effective methods for permanent sequestration of anthropogenic CO2 is to inject CO2 into deep, unminable coal seams and recover coal bed methane at the same time. CO2-ECBM technology had been proved to be very promising to meet the needs of both environment and energy. Besides other external environment factors, capacity of CO2 adsorption and CH4 desorption are the most influencing factors in the selection of sites for the geological storage of CO2. Therefore, the objective of this study is to understand the relationship between gas adsorption and CO2 sequestration, by various experiments for the characterization of Australian coals. Generally speaking, coal seam gas comprises mostly of CH4, CO2, C2H6, and N2. However, some of the Australian coals were reported with significant amount of CO2 up to 90%, which might strongly affect their capacity of CO2 capture and storage (CCS). High to medium volatile bituminous coals from Sydney Basin and Bowen Basin of Australia were selected in this study. Proximate analysis, Ultimate analysis, specific surface area analysis as well as CH4 adsorption experiments were performed. Parameters for difference adsorption functions (Langmuir, BET, D-R and D-A) were thus calculated to fit their adsorption isotherms and the best fitting curve can then be found. In conclude, D-A function exhibits the best fitting result other than Langmuir, D-R and BET functions.
關鍵字(中) ★ 煤
★ Langmuir
★ BET
★ D-R
★ D-A
關鍵字(英) ★ Coal
★ Langmuir
★ BET
★ D-R
★ D-A
論文目次 目錄
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
一、緒 論 1
1-1 研究動機與目的 1
1-2  研究區域概述 3
1-2-1 地質背景 3
1-2-2 煤層氣來源 7
1-3  內文概述 8
二、文獻回顧 10
2-1  CO2-ECBM之發展 10
2-2  煤層氣體吸附原理 12
2-2-1 氣體流動機制 12
2-2-2 等溫吸附曲線 13
2-2-3 差異吸附 15
2-3  影響氣體吸附之因素 17
2-3-1 煤級 (Coal Rank) 17
2-3-2 煤素質組成 19
2-3-3 深度 20
2-3-4 煤岩結構 21
2-4  絕對吸附量與Gibbs吸附量 23
三、等溫吸附模型 24
3-1  吸附理論 24
3-1-1 Langmuir Equation 24
3-1-2 Brunauer-Emmett-Teller Equation 25
3-1-3 Dubinin–Radushkevitch (D–R) Equation 27
3-1-4 Dubinin–Astakhov (D–A) Equation 28
3-2  吸附理論比較 28
四、研究方法 30
4-1  研究流程 30
4-2  研究樣本 30
4-2煤岩特性與孔隙分析 31
4-2-1 工業分析 31
4-2-2 元素分析 33
4-2-3 比表面積分析 36
4-3  吸附實驗 38
4-3-1 樣本製備及煤樣物性資料 38
4-3-2 吸附實驗 39
4-3-3 氣體吸附計算 40
五、結果與討論 41
5-1 煤岩性質與氣體吸附能力之關聯性 41
5-1-1  元素組成 41
5-1-2  灰分、水分、揮發分及固定碳 43
5-1-3  比表面積及孔隙組成 45
5-2 氣體吸附結果 47
5-2-1  吸附實驗數據 47
5-2-2  吸附擬合結果 49
5-2-3  相關係數R-square及平均相對誤差MRE 53
5-2-4 澳洲煤樣甲烷吸附特性 54
5-2-5 不同地區之煤樣吸附擬合結果 55
5-2-6 D-A方程之n值的影響 59
5-3 Gibbs吸附量與絕對吸附量之差異 60
六、結論 61
參考文獻 63
附錄 69
A. 本研究澳洲煤樣之真密度 69
B. 四種吸附模式對印度地區煤樣之擬合曲線 70
C. 四種吸附模式對捷克地區煤樣之擬合曲線 84
D. 四種吸附模式對紐西蘭地區煤樣之擬合曲線 86
參考文獻 參考文獻
〔1〕 Faiz, M.M., Saghafi, A., Barclay, S.A., Stalker, L., Sherwood, N.R. and Whitford, D.J., “Evaluating geological sequestration of CO2 in bituminous coals: The southern Sydney Basin, Australia as a natural analogue”, International Journal of Greenhouse Gas Control, 1, 223-235, 2007.
〔2〕 Robertson E. P., “Economic analysis of carbon dioxide sequestration in powder river basin coal”, International Journal of Coal Geology, 77, 234-241, 2009.
〔3〕 Saghafi, A., Faiz, M. and Roberts, D., “CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia”, International Journal of Coal Geology, 70, 240-254, 2007.
〔4〕 Reeves, S.R., “Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project”, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September-3 October, 2001.
〔5〕 Connell, L.D., Sander, R., Pan, Z., Camilleri, M. and Heryanto, D., “History matching of enhanced coal bed methane laboratory core flood tests”, International Journal of Coal Geology, 87, 128-138, 2011.
〔6〕 Garnier, Ch., Finqueneisel, G., Zimny, T., Pokryszka, Z., Lafortune, S., Defossez, P.D.C. and Gaucher, E.C., “Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms”, International Journal of Coal Geology, 87, 80-86, 2011.
〔7〕 Australian Government, http://www.ga.gov.au/index.html.
〔8〕 Global Methane Initiative, “Coal mine methane country profiles: Chapter 2 Australia”, 2010.
〔9〕 McKay, A.D., Huleatt, M.B., Miezitis, Y., Porritt, K.R., Sait, R., Carson, L.J., Paul, K., Sexton, M.J. and Lambert, I.B., “Australia’s Identified Mineral Resources 2008”, 2008.
〔10〕 Uysal, I.T., Golding, S.D. and Audsley F., “Clay-mineral authigenesis in the late permian coal measures, bowen basin, queensland, Australia”, Clays and Clay Minerals, 48(3), 351-365, 2000.
〔11〕 Fielding, C.R., Falkner, A.J. and Scott, S.G., “Fluvial response to foreland basin overfilling; the Late Permian Rangal Coal Measures in the Bowen Basin, Queensland, Australia”, Sedimentary Geology, 85, 475-497, 1993.
〔12〕 Faiz, M., Saghafi, A., Sherwood, N. and Wang, I., “The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia”, International Journal of Coal Geology, 70, 193-208, 2007.
〔13〕 Dart Energy, http://www.dartenergy.com.au/.
〔14〕 Saghafi, A., “Potential for ECBM and CO2 storage in mixed gas Australian coals”, International Journal of Coal Geology, 82, 240-251, 2010.
〔15〕 Clayton, J.L., “Geochemistry of coalbed gas – A review”, International Journal of Coal Geology, 35, 159-173, 1998.
〔16〕 Krooss, B.M., van Bergen, F., Gensterblum, Y., Siemons, N., Pagnier, H.J.M., David, P., “High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals”, International Journal of Coal Geology, 51, 69-92, 2002.
〔17〕 Day, S., Sakurovs, R. and Weir S., “Supercritical gas sorption on moist coals”, International Journal of Coal Geology, 74, 203-214, 2008.
〔18〕 Hamelinck, C.N., Faaij, A.P.C., Turkenburg, W.C., van Bergen, F., Pagnier, H.J.M., Barzandji, O.H.M., Wolf, K.-H.A.A. and Ruijg, G.J., “CO2 enhanced coalbed methane production in the Netherlands”, Energy, 27, 647-674, 2002.
〔19〕 Damen, K., Faaij, A., van Bergen, F., Gale, J. and Lysen E., “Identification of early opportunities for CO2 sequestration- worldwide screening for CO2-EOR and CO2-ECBM projects”, Energy, 30, 1931-1952, 2005.
〔20〕 Bromhal, G.S., Sams, W.N., Jikich, S., Ertekin, T. and Smith, D.H., “Simulation of CO2 sequestration in coal beds: The effects of sorption isotherms”, Chemical Geology, 217, 201-211, 2005.
〔21〕 Keller, J.U. and Staudt, R., Gas Adsorption Equilibria, 2005.
〔22〕 White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B., Ozdemir, E., Morsi, B.I. and Schroeder, K.T., “Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recoverys A Review”, Energy & Fuels, 19(3), 660-724, 2005.
〔23〕 Cui, X.J., Bustin, R.M. and Dipple G., “Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data”, Fuel, 83, 293-303, 2004.
〔24〕 Faiz, M.M., Aziz, N.I., Hutton, A.C. and Jones, B.G., “Porosity and gas sorption capacity of some eastern Australian coals in relation to coal rank and composition”, Symposium on coalbed methane research and development in Australia, 9-13, 1992.
〔25〕 ASTM (1977). Classification of coals by rank, D388-77.
〔26〕 Busch, A. and Gensterblum, Y., “CBM and CO2-ECBM related sorption processes in coal: A review”, International Journal of Coal Geology, 87, 49-71, 2011.
〔27〕 Laxminarayana, C. and Crosdale, P.J., “Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals”, International Journal of Coal Geology, 40, 309-325, 1999.
〔28〕 Stach E., Mackowsky M.-Th, Teichuller M., Taylor G.H., Chandra D. and Teichmuller R., Stach’s textbook of coal petrology, Bornstraeger, Berlin, 3rd ed, 1982.
〔29〕 林孟嬿,“不同成熟度之有機成分探討”,國立中央大學應用地質研究所碩士論文,2008。
〔30〕 Day, S., Duffy, G., Sakurovs, R. and Weir, S., “Effect of coal properties on CO2 sorption capacity under supercritical conditions”, International Journal of Greenhouse Gas control, 2, 342-352, 2008.
〔31〕 Gurdal, G. and Yalcin M.N., “Pore volume and surface area of the Carboniferous coalsfrom the Zonguldak basin (NW Turkey) and their variationswith rank and maceral composition”, International Journal of Coal Geology, 48, 133-144, 2001.
〔32〕 Gamson, P.D. and Beamish, B.B., “Coal type, microstructure and gas flow behaviour of Bowen Basin coals”, Symposium on coalbed methane research and development in Australia, 43-67, 1992.
〔33〕 管俊芳,侯瑞云,“煤儲層基質孔隙和割理孔隙的特徵及孔隙度的測定方法”,華北水利水電學院學報,20 (1),1999。
〔34〕 Mastalerz, M., Drobniak, A. and Rupp, J., “Meso- and Micropore Characteristics of Coal Lithotypes: Implications for CO2 Adsorption”, Energy & Fuels, 22, 4049-4061, 2008.
〔35〕 Harpalani, S., Prusty, B. K. and Dutta, P., “Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration”, Energy & Fuels, 20, 1591-1599, 2006.
〔36〕 Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica and platinum”, J. Am. Chem. Soc., 40(8), 1361-1403, 1918.
〔37〕 Atkins, P.W., Elements of physical chemistry, 5th ed, 2009.
〔38〕 Brunauer, S., Emmett, P.H. and Teller, E., “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 309-319, 1938.
〔39〕 Wang, R.Z. and Wang, Q.B., “Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs”, International Journal of Energy Research, 23, 887-898, 1999.
〔40〕 Hutson, N.D. and Yang, R.T., “Theoretical Basis for the Dubinin- Radushkevitch (D-R) Adsorption Isotherm Equation”, Adsorption, 3, 189-195, 1997.
〔41〕 Rudzinski, W. and Everett, D.H., Adsorption of Gases on Heterogeneous Surfaces, Academic Press, 1992.
〔42〕 Clarkson, C. R., Busting, R. M. and Levy, J. H., “Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure”, Carbon, 35 (12), 1689-1705, 1997.
〔43〕 Clarkson, C. R. and Busting, R. M., “Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane”, International Journal of Coal Geology, 42, 241-271, 2000.
〔44〕 崔永君,張群,張泓,張慶玲,”不同煤級煤對CH4、CO2和N2單組份氣體的吸附”,天然氣工業,25 (1),2005。
〔45〕 Adiraju, B., “Adsorption of CO2 on Indian coals”, Department of Chemical Engineering, National Institute of Technology, India, Thesis of Master, 2010.
〔46〕 Li, W., Cheng, Y.P., Wu D.M. and An P.H., “CO2 isothermal adsorption models of coal in the Haishi wan Coalfield”, Mining Science and Technology, 20, 281-285, 2010.
〔47〕 胡雄,李洋冰,來建賓,董樹紅,尚東紅,“用Vario micro cube 元素分析儀測定干酪根樣品中的氧含量”,化工時刊,24 (4),2010。
〔48〕 GBT 217 2008 - 煤的真相對密度測定方法。
〔49〕 Van Krevelen, D.W., Coal: Typology, Chemistry, Physics and Constitution, 1961.
〔50〕 薛慶良,“煤吸附CO2實驗評估與應用”,國立台北科技大學資源工程研究所碩士論文,2011。
〔51〕 Dutta, P., Bhowmik, S. and Das S., “Methane and carbon dioxide sorption on a set of coals from India”, International Journal of Coal Geology, 85, 289-299, 2011.
〔52〕 Weniger, P., Franců, J., Hemza, P. and Krooss, B.M., “Investigations on the methane and carbon dioxide sorption capacity of coals from the SW Upper Silesian Coal Basin, Czech Republic”, International Journal of Coal Geology, 93, 23-39, 2012.
〔53〕 Mares, T. E., Radliński A. P., Moore T. A., Cookson, D., Thiyagarajan P., Ilavsky J., Klepp J., “Assessing the potential for CO2 adsorption in a subbituminous coal, Huntly Coalfield, New Zealand, using small angle scattering techniques”, International Journal of Coal Geology, 77, 54-68, 2009.
〔54〕 劉保淇,“ 煤層孔隙率與滲透率特性評估”,國立中央大學應用地質研究所碩士論文,2010。
〔55〕 李沂錡,“ 澳洲煤樣物化特性實驗與氣體封存關聯性研究”,國立中央大學應用地質研究所碩士論文,2012。
指導教授 蔡龍珆(Loung-Yie Tsai) 審核日期 2013-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明