科目:工程數學 共 2 頁 第 | 頁

所別:機械工程學系碩士班 甲組(固力與設計)(一般生)

幾械工程學系碩士班 乙組(製造與材料)(一般生)

機械工程學系碩士班 丙組(熱流)(一般生)

能源工程研究所碩士班 不分組(一般生)

機械工程學系光機電工程碩士班 乙組(光機)(一般生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

Vector analysis and linear algebra

1. An elastic membrane stretched in a specific direction can be described as an eigenvalue problem. Please consider a membrane with a boundary circle $x_1^2 + y_1^2 = 1$ is stretched from a point P: (x_1,y_1) to Q: (x_2,y_2) and experimentally determined by

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

- (a) Please find the principal directions by solving eigenvalues and eigenvectors. (10%)
- (b) Please show that the deformed boundary is an ellipse by using $\frac{x_2^2}{\lambda_1^2} + \frac{y_2^2}{\lambda_2^2} = 1$, where

 $\lambda_1 \lambda_2$ are eigenvalues (5%)

2. Please use Gauss elimination method to solve the following linear systems of electrical networks

(a)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & 10 & 25 & 0 \\ 20 & 10 & 0 & 0 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 90 \\ 80 \end{bmatrix}$$
 (5%) (b)
$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 6 & 2 & 4 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}$$
 (5%)

Ordinary differential equations

3. Find a general solution to the following ordinary differential equations (ODEs):

(a)
$$y' + xy = xy^{-1}$$
, $y(0) = -\frac{1}{3}$ (5%)

(b)
$$y'' - 2y' + y = 70x^{3/2}e^x$$
 (5%)

- 4. For a homogenous ODE given as y'''+2y''-y'-2y=0. (1)
 - (a) Find three solutions $y_1(x)$, $y_2(x)$, and $y_3(x)$ that can form a basis of solutions, show that they are linear independent, for Eq. (1). (5%)
 - (b) If there is a non-homogenous term $r(x)=1-4x^3$ of Eq. (1), then Eq. (1) becomes $y'''+2y''-y'-2y=1-4x^3$, (2)

find the particular solution for Eq. (2), that is $y_p(x) = ?$ (5%)

(c) Transfer Eq. (2) to a system of 1st-order ODEs and express the 1st-order system of ODEs in a matrix form. (5%)

注:背面有試題

工程學系碩士班 甲組(固力與設計)(一般生)

科目:工程數學 程學系碩士班 乙組(製造與材料)(-

星學系碩士班 丙組(熱流)(一般生)

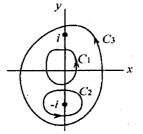
*請在試卷答案卷(卡)內作答

Partial differential equations and complex analysis

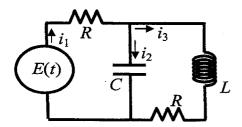
Solve

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < 1, \quad t > 0,$$

$$u(0,t) = u_0(t), \quad u(1,t) = u_1(t), \quad t > 0,$$


$$u(x,0) = h(x), \quad 0 < x < 1.$$

(b) For
$$u_0(t) = u_1(t) = 0$$
, $h(x) = x$. (5%)


(c) For
$$u_0(t) = 0$$
, $u_1(t) = \exp(-t)$, $h(x) = x$. (5%)

Evaluate the complex integral $\oint_C \frac{\sin z}{z^2 + 1} dz$ along the indicated closed contour, C_1 , C_2 and C_3 , respectively. (10%)

Laplace and Fourier transforms

The system of differential equations for the charge on the capacitor q(t) and the current $i_3(t)$ in the electric network shown in Fig. 1 is

$$R_{1} \frac{dq}{dt} + \frac{1}{C} q + R_{1} i_{3} = E(t)$$

$$L \frac{di_{3}}{dt} + R_{2} i_{3} - \frac{1}{C} q = 0$$

Figure 1

(1)(10%) If the applied voltage E(t) can be formulated as

$$E(t) = \begin{cases} 0, & t < 0 \\ e^{-t}, & t > 0 \end{cases}$$

Express E(t) in terms of Fourier Integral representations.

(2)(15%) Solve the charge on the capacitor when $R_1=1\Omega$, $R_2=1\Omega$, L=1h, C=1f,

$$E(t) = \begin{cases} 0 & 0 \le t < 1 \\ 50e^{-t} & t \ge 1 \end{cases},$$

 $i_3(0)=0$ and q(0)=0 by using Laplace transform.

注:背面有試題