F別:統計研究所碩士班 不分組(一般生) 科目:基礎數學 共] 頁 第 』 頁

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

- 1. Evaluate
 - a. $(5\%) \lim_{x\to 0^+} x^{\sin x}$;
 - b. (5%) $\lim_{x \to +\infty} \frac{\sqrt{2+x^2}}{x}$.
- 2. (10%) Determine all possible values of k such that the integral $\int_0^\infty \frac{x^k}{1+x^2} dx$ is finite.
- 3. (10%) Prove or disprove that the series $\sum_{n=1}^{\infty} \exp(-n^{\epsilon})$ is convergent for all $\epsilon > 0$.
- 4. (10%) Verify for all $\tau > 0$ that

$$\int_0^\infty \exp\{-\frac{1}{2}\,\tau\,x^2\}\,dx = \frac{1}{\sqrt{\tau}}\,\frac{\sqrt{2\pi}}{2}.\tag{1}$$

- 5. (10%) Define $g(t) = \int_0^\infty \cos(tx) \exp(-\frac{x^2}{2}) dx$ for $t \ge 0$ such that g(t) > 0. Work out g(t).
- 6. (10%) Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$. Find a "positive square root" of A, that is, a matrix B such that $B^2 = A$ and B has positive eigenvalues.
- 7. (10%) Is the matrix $M = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$ diagonalizable?
- 8. (10%) Given an invertible $n \times n$ real matrix A and one column vector $\mathbf{u} \in \mathbb{R}^n$, consider $\mathbf{x} = A^{-1}\mathbf{u}$ and $\mathbf{y} = (A + \lambda \mathbf{u} \mathbf{v}^{\mathsf{T}})^{-1}\mathbf{u}$ for any scalar λ and column vector $\mathbf{v} \in \mathbb{R}^n$ such that $A + \lambda \mathbf{u} \mathbf{v}^{\mathsf{T}}$ is also invertible. Determine whether \mathbf{y} is parallel to \mathbf{x} .
- 9. Let $\mathbf{1}_n$ be the column vector of ones in \mathbb{R}^n . Given another p-1 vectors $\mathbf{x}_2, \dots, \mathbf{x}_p$ of \mathbb{R}^n , consider a $n \times p$ matrix $X = [\mathbf{1}_n \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_p]$ and define $P = X(X^\top X)^{-1}X^\top$. We assume $(X^\top X)^{-1}$ exists. Show
 - a. $(5\%) \mathbf{1}_{n}^{\top} P = \mathbf{1}_{n}^{\top};$
 - b. (5%) $H^2 = H$, where $H = P \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}$;
 - c. (5%) H is semi-positive definite;
 - d. (5%) $p_{ii} \geq \frac{1}{n}$ for all i = 1, ..., n, where p_{ii} is the *i*th diagonal element of P.